1
|
Teixidor-Rodríguez P, Brugada-Bellsolà F, Menéndez-Girón S, Tardáguila-Serrano M, González-Crespo A, Nuñez-Marín F, Montané E, Busquets-Bonet J, Muñoz-Narbona L, Domínguez-Alonso CJ. Effectiveness and safety of Tachosil® as a ventricular sealant: an observational cohort study. Acta Neurochir (Wien) 2024; 166:384. [PMID: 39331127 DOI: 10.1007/s00701-024-06276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Surgery close to or in contact with the ventricular system is challenging due to the complications. We sought to evaluate the effectiveness and safety of TachoSil® as a ventricular sealant in preventing complications after cranial surgery with an open ventricular system (OVS). METHODS This is a single-center and prospective cohort study We included patients who underwent elective surgery for supratentorial craniotomy and periventricular pathology between December 2020 and November 2023. We registered surgical complications arising from CSF dynamics (such as percutaneous cerebrospinal fluid (CSF) leakage, hydrocephalus, pseudomeningocele), infections, and other complications (postsurgical hematoma) adverse drug reactions (ADRs), reintervention or hospital readmission up to 90 days after surgery. RESULTS Forty interventions were performed on 39 patients, whose median age was 56 years. Eleven patients (28.2%) had antecedents of previous surgery in the same location, 5 (12.8%) had previously received radiotherapy and chemotherapy, and 11 (28.2%) were smokers. Twenty-four patients (60%) underwent surgery for high-grade glioma, 8 (20%) for low-grade gliomas, 6 (15%) for metastasis and 2 (5%) for meningioma. Throughout the study and up to 90 days after surgery, none of the patients presented an ADR. Only 2 patients (5%) presented with a surgery complications derived from ventricular opening (one patient with a percutaneous CSF leakage and one patients with external hydrocephalus). Both patients resolved with a ventriculoperitoneal shunt. CONCLUSIONS TachoSil® is a dural sealant that can be used safely and effectively intraparenchymally in patients whose surgery involves a ventricular opening. Only 5% of treated patients presented complications arising from CSF hydrodynamics. No patients had pseudomeningocele, infections or complications related to the use of this sealant. To confirm these positive results, randomized and comparative clinical trials assessing the efficacy of TachoSil® in patients after cranial surgery with an OVS are essential. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION This study was registered in the Clinical Trials.gov (NCT05717335). Date May 1st, 2022.
Collapse
Affiliation(s)
- Pilar Teixidor-Rodríguez
- Department of Neurological Surgery, Hospital Universitari Germans Trias I Pujol, Ctra del Canyet Sn, CP 08916, Barcelona, Badalona, Spain.
| | - Ferran Brugada-Bellsolà
- Department of Neurological Surgery, Hospital Universitari Germans Trias I Pujol, Ctra del Canyet Sn, CP 08916, Barcelona, Badalona, Spain
| | - Sebastián Menéndez-Girón
- Department of Neurological Surgery, Hospital Universitari Germans Trias I Pujol, Ctra del Canyet Sn, CP 08916, Barcelona, Badalona, Spain
| | - Manuel Tardáguila-Serrano
- Department of Neurological Surgery, Hospital Universitari Germans Trias I Pujol, Ctra del Canyet Sn, CP 08916, Barcelona, Badalona, Spain
| | - Antonio González-Crespo
- Department of Neurological Surgery, Hospital Universitari Germans Trias I Pujol, Ctra del Canyet Sn, CP 08916, Barcelona, Badalona, Spain
| | - Fidel Nuñez-Marín
- Fidel Nuñez Marín, Image Radiology Institut, Hospital Vall d´Hebrón, Barcelona, Spain
| | - Eva Montané
- Clinical Pharmacology Service, Hospital Universitari Germans Trias I Pujol, 08916, Barcelona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Jordi Busquets-Bonet
- Department of Anesthesiology, Hospital Universitari Germans Trias I Pujol, Barcelona, Badalona, Spain
| | - Lucia Muñoz-Narbona
- Neurosciences Department, Germans Trias I Pujol Research Institute, Barcelona, Badalona, Spain
| | - Carlos Javier Domínguez-Alonso
- Department of Neurological Surgery, Hospital Universitari Germans Trias I Pujol, Ctra del Canyet Sn, CP 08916, Barcelona, Badalona, Spain
| |
Collapse
|
2
|
Yang L, Huang GH, Zhang ZX, Pei YC, Lv SQ. Bedside ultrasound-assisted puncture and drainage under local anesthesia: A novel approach for early post-operative space-occupying tumor bed cysts of glioma resection. J Clin Neurosci 2024; 126:68-74. [PMID: 38850763 DOI: 10.1016/j.jocn.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES To investigate the causes of space-occupying tumor bed cysts formed early after glioma resection by measuring the osmotic pressure gradient between cystic fluid, serum, and cerebrospinal fluid (CSF) and propose a new method of bedside ultrasound-assisted puncture and drainage (UAP&D) under local anesthesia for treatment. METHODS Bedside UAP&D under local anesthesia was performed through a burr hole on the skull flap.Following a successful puncture, cystic fluid was collected, while blood and CSF were obtained through vein and lumbar puncture, respectively. The osmotic pressure of all fluids collected was measured. The appearance, biochemical composition, and results of microbial culture of cystic fluid and CSF were analyzed. Within 24 h after UAP&D, a CT examination and Glasgow coma scale (GCS) were assessed. RESULTS The osmotic pressure of cystic fluid was higher than that of serum and CSF. White blood cell count and protein concentration were higher in the cystic fluid compared to the CSF. Conversely, the concentration of chloride ions and glucose were lower. CT scan confirmed the correct placement of the cysts' drainage tube and that the cysts' volume decreased significantly with continued drainage. Accompanied by a reduction in the volume of cysts, there were significant improvements in GCS score within 24 h after UAP&D. All drainage tubes were removed within 2-5 days, and no puncture tract hemorrhage or infection was observed. CONCLUSION The osmotic pressure gradient between cystic fluid, serum, and CSF caused the formation of early post-operative space-occupying tumor bed cysts for glioma. UAP&D aligns with the concept that micro-invasive neurosurgery is an effective treatment method for such cysts.
Collapse
Affiliation(s)
- Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing City 400037, PR China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing City 400037, PR China
| | - Zuo-Xin Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing City 400037, PR China
| | - Yu-Chun Pei
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing City 400037, PR China.
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing City 400037, PR China.
| |
Collapse
|
3
|
Holdaway M, Ablyazova F, Huda S, D'Amico RS, Wong T, Shani D, Ben-Shalom N, Boockvar JA. First in-human intrathecal delivery of bevacizumab for leptomeningeal spread from recurrent glioblastoma: rationale for a dose escalation trial. J Neurooncol 2023; 164:231-237. [PMID: 37548850 DOI: 10.1007/s11060-023-04412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE To outline the dose rationale for the first in-human intrathecal delivery of bevacizumab for LMS of GBM. METHODS A 19-year-old female patient presented to Lenox Hill Hospital following thalamic GBM recurrence. She subsequently underwent two infusions of intra-arterial BEV (NCT01269853) and experienced a period of relative disease stability until progression in 2022. One month later, MRI disclosed diffuse enhancement representative of LMS of GBM. The patient subsequently underwent five cycles of IT BEV in mid-2022 (IND 162119). Doses of 25 mg, 37.5 mg, 50 mg, 50 mg, and 37.8 mg were delivered at two-week intervals between doses 1-4. The final 37.8 mg dose was given one day following her fourth dose, given that the patient was to be discharged, traveled several hours to our center, and was tolerating therapy well. Dosage was decreased due to the short interval between the final two treatments. Shortly after IT BEV completion, she received a third dose of IA BEV. RESULTS Our patient did not show any signs of serious adverse effects or dose limiting toxicities following any of the treatments. It is difficult to determine PFS due to the rapid progression associated with LMS of GBM and rapid timeframe of treatment. CONCLUSION LMS continues to be a devastating progression in many types of cancer, including GBM, and novel ways to deliver therapeutics may offer patients symptomatic and therapeutic benefits.
Collapse
Affiliation(s)
- Matthew Holdaway
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA.
- Albany Medical College, Albany, NY, USA.
| | - Faina Ablyazova
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - Shayan Huda
- CUNY School of Medicine, New York City, NY, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - Tamika Wong
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - Dana Shani
- Department of Hematology, Medical Oncology, Internal Medicine, Lenox Hill Hospital, New York City, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, New York, NY, USA
| | - Netanel Ben-Shalom
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| | - John A Boockvar
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Lenox Hill Hospital, 130 East 77th Street, New York, NY, 10065, USA
| |
Collapse
|
4
|
Zhang Y, Wang L, Zhang C, Zhang J, Yuan L, Jin S, Zhou W, Guan X, Kang P, Zhang C, Tian J, Chen X, Li D, Jia W. Preclinical assessment of IRDye800CW-labeled gastrin-releasing peptide receptor-targeting peptide for near infrared-II imaging of brain malignancies. Bioeng Transl Med 2023; 8:e10532. [PMID: 37476052 PMCID: PMC10354759 DOI: 10.1002/btm2.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 07/22/2023] Open
Abstract
We aimed to develop a new biocompatible gastrin-releasing peptide receptor (GRPR) targeted optical probe, IRDye800-RM26, for fluorescence image-guided surgery (FGS) of brain malignancies in near-infrared window II (NIR-II) imaging. We developed a novel GRPR targeting probe using a nine-amino-acid bombesin antagonist analog RM26 combined with IRDye800CW, and explored the fluorescent probe according to optical properties. Fluorescence imaging characterization in NIR-I/II region was performed in vitro and in vivo. Following simulated NIR-II image-guided surgery, we obtained time-fluorescent intensity curves and time-signal and background ratio curves. Further, we used histological sections of brain from tumor-beating mice model to compare imaging specificity between 5-aminolevulinic acid (5-ALA) and IRDye800-RM26, and evaluated biodistribution and biocompatibility. IRDye800-RM26 had broad emission ranging from 800 to 1200 nm, showing considerable fluorescent intensity in NIR-II region. High-resolution NIR-II imaging of IRDye800-RM26 can enhance the advantages of NIR-I imaging. Dynamic and real time fluorescence imaging in NIR-II region showed that the probe can be used to treat brain malignancies in mice between 12 and 24 h post injection. Its specificity in targeting glioblastoma was superior to 5-ALA. Biodistribution analysis indicated IRDye800-RM26 excretion in the kidney and liver. Histological and blood test analyses did not reveal acute severe toxicities in mice treated with effective dose (40 μg) of the probe for NIR-II imaging. Because of the considerable fluorescent intensity in NIR-II region and high spatial resolution, biocompatible and excretable IRDye800-RM26 holds great potentials for FGS, and is essential for translation into human use.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Li Wang
- Jiangsu Xinrui Pharmaceutical Co., Ltd.NantongChina
| | - Chengkai Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Linhao Yuan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Shucheng Jin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Peng Kang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of MedicineBeihang UniversityBeijingChina
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| |
Collapse
|
5
|
Zhang Z, Wu Y, Zhao X, Zhai X, Li L, Liang P. Incidence and Risk Factors for Necessitating Cerebrospinal Fluid Diversion Following Medulloblastoma Surgery in Children. Pediatr Neurol 2023; 146:95-102. [PMID: 37454398 DOI: 10.1016/j.pediatrneurol.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND There are insufficient data on pediatric patients with medulloblastoma who require cerebrospinal fluid (CSF) diversion following resection. Therefore, this study aimed to determine the incidence and the characteristics associated with it in this subset of patients. METHODS We conducted a single-center, retrospective, observational cohort study of patients aged 18 years or less who underwent medulloblastoma resection at our department between 2010 and 2021. The primary outcome was the incidence of CSF diversion surgery required after resection. Participant demographics, tumor biology, and interventions were analyzed using univariate- and multivariate-adjusted models. RESULTS Of the 183 patients admitted to our department, 131 (71.6%) participated in this study. The incidence of permanent CSF diversion was 26.0% (95% confidence interval [CI]: 18.7 to 34.3). Factors independently associated with requirement of permanent CSF diversion were medulloblastoma volume >46.4 cm3 (odds ratio [OR]: 2.919, 95% CI: 1.191 to 7.156) and CSF channel invasion (OR: 2.849, 95% CI: 1.142 to 7.102). The duration of manifestation may be a covariate of tumor volume with increased risk of requirement for permanent CSF diversion (OR: 1.006, 95% CI: 1.000 to 1.013), and tumor volume may be a predictor in patients who underwent subtotal resection (OR: 4.900, 95% CI: 0.992 to 24.208, P = 0.05). Finally, patients who required permanent CSF diversion were divided according to medulloblastoma molecular subgroups, and no significant differences were found. CONCLUSION We report major predictive factors for permanent CSF diversion surgery in patients with medulloblastoma. Our study suggests that the presence of postresection hydrocephalus is not high enough to warrant permanent, prophylactic CSF diversion in all patients.
Collapse
Affiliation(s)
- Zaiyu Zhang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xueling Zhao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lusheng Li
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
6
|
Li M, Gao F, Ren X, Dong G, Chen H, Lin AY, Wang DD, Liu M, Lin PP, Shen S, Jiang H, Yang C, Zhang X, Zhao X, Zhu Q, Li M, Cui Y, Lin S. Non‐hematogenic circulating aneuploid cells confer inferior prognosis and therapeutic resistance in gliomas. Cancer Sci 2022; 113:3535-3546. [PMID: 35940591 PMCID: PMC9530864 DOI: 10.1111/cas.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
Aneuploidy is the hallmark of malignancy. Our previous study successfully detected nonhematogenic circulating aneuploidy cells (CACs) in types of gliomas. The current prospective clinical study aims to further precisely subcategorize aneuploid CACs, including CD31− circulating tumor cells (CTCs) and CD31+ circulating tumor endothelial cells, and thoroughly investigate the clinical utilities of these different subtypes of cells. Co‐detection and analysis of CTCs and circulating tumor‐derived endothelial cells (CTECs) expressing CD133, glial fibrillary acidic protein (GFAP), or epidermal growth factor receptor variant III (EGFR vIII) were performed by integrated subtraction enrichment and immunostaining fluorescence in situ hybridization (SE‐iFISH) in 111 preoperative primary diffuse glioma patients. Aneuploid CACs could be detected in most de novo glioma patients. Among detected CACs, 45.6% were CD31−/CD45− aneuploid CTCs and the remaining 54.4% were CD31+/CD45− aneuploid CTECs. Positive detection of CTECs significantly correlated with disruption of the blood–brain barrier. The median number of large CTCs (LCTCs, >5 μm, 2) in low‐grade glioma (WHO grade 2) was less than high‐grade glioma (WHO grades 3 and 4) (3, p = 0.044), but this difference was not observed in small CTCs (SCTCs, ≤5 μm), CTECs or CACs (CTCs + CTECs). The numbers of CTCs, CTECs, or CACs in patients with contrast‐enhancing (CE) lesions considerably exceeded that of non‐CE lesions (p < 0.05). Receiver operating characteristic curves demonstrated that CD31+ CTECs, especially LCTECs, exhibited a close positive relationship with CE lesions. Survival analysis revealed that the high number of CD31− CTCs could be an adverse factor for compromised progression‐free survival and overall survival. Longitudinal surveillance of CD31− CTCs was suitable for evaluating the therapeutic response and for monitoring potential emerging treatment resistance.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Faliang Gao
- Department of Neurosurgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou, People’s Hospital of Hangzhou Medical College Hangzhou Zhejiang China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province Hangzhou Zhejiang China
| | - Xiaohui Ren
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital Capital Medical University Beijing China
| | | | | | - Mingyang Liu
- Department of Medicine University of Oklahoma Health Science Center Oklahoma City OK USA
| | | | - Shaoping Shen
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Haihui Jiang
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Chuanwei Yang
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Xiaokang Zhang
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Xuzhe Zhao
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Qinghui Zhu
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Ming Li
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Yong Cui
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
| | - Song Lin
- Department of Neuro‐surgical Oncology, National Clinical Research Center for Neurological Diseases Capital Medical University Beijing China
- Department of Neurosurgery, Beijing Neurosurgical Institute Capital Medical University Beijing China
- Center of Brain Tumor Beijing Institute for Brain Disorders Beijing China
- Beijing Key Laboratory of Brain Tumor Beijing China
| |
Collapse
|
7
|
Shibahara I, Shibahara Y, Hagiwara H, Watanabe T, Orihashi Y, Handa H, Inukai M, Hide T, Yasui Y, Kumabe T. Ventricular opening and cerebrospinal fluid circulation accelerate the biodegradation process of carmustine wafers suggesting their immunomodulation potential in the human brain. J Neurooncol 2022; 159:425-435. [PMID: 35802230 DOI: 10.1007/s11060-022-04078-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Opening the ventricular system during glioblastoma surgery is often necessary, but the consequent effect on the tumor microenvironment of glioblastoma remains unknown. Implantation of carmustine wafer enables direct drug delivery to the tumor site; however, the exact mechanism of the wafer's biodegradation process is unclear, and the available data is limited to in vivo non-human mammalian studies. We hypothesized that the ventricular opening affects the degradation process of the wafer and the glioblastoma tumor microenvironment. METHODS This study included 30 glioblastoma patients. 21 patients underwent carmustine wafer implantation during initial surgery. All patients underwent repeated surgical resection upon recurrence, allowing for pathological comparison of changes associated with wafer implantation. Immunohistochemical analyses were performed using CD68, TMEM119, CD163, IBA1, BIN1, and CD31 antibodies to highlight microglia, macrophages, and tumor vascularity, and the quantitative scoring results were correlated with clinical, molecular, and surgical variables, including the effect of the ventricular opening. RESULTS The carmustine wafer implanted group presented significantly less TMEM119-positive microglia within the tumor (P = 0.0002). Simple and multiple regression analyses revealed that the decrease in TMEM119-positive microglia was correlated with longer intervals between surgeries and opened ventricular systems. No correlation was observed between age, methylated O6-methylguanine DNA methyltransferase promoter expression, and the extent of surgical resection. CONCLUSIONS Our study findings strongly suggest that biomaterials may possess immunomodulation capacity, which is significantly impacted by the ventricular opening procedure. Furthermore, our data highlights the pathophysiological effects of the ventricular opening within the surrounding human brain, especially after the wafer implantation.
Collapse
Affiliation(s)
- Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Yukiko Shibahara
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Hagiwara
- Department of Neurosurgery, Yamato Municipal Hospital, Yamato, Kanagawa, Japan
| | - Takashi Watanabe
- Department of General Internal Medicine, JCHO Sendai Hospital, Sendai, Miyagi, Japan
| | - Yasushi Orihashi
- Division of Clinical Research, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Hajime Handa
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshie Yasui
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
8
|
Battista F, Muscas G, Dinoi F, Gadda D, Della Puppa A. Ventricular entry during surgical resection is associated with intracranial leptomeningeal dissemination in glioblastoma patients. J Neurooncol 2022; 160:473-480. [PMID: 36273377 PMCID: PMC9722854 DOI: 10.1007/s11060-022-04166-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Glioblastoma (GBM) is associated with a poorer prognosis when leptomeningeal dissemination (LMD) occurs. Recently, the role of both ventricular entry (VE) during surgery and subventricular zone localization of tumors in promoting LMD in GBM patients has been debated. This article investigates the role of VE in causing LMD in GBM patients. METHODS We conducted a retrospective analysis of GBMs operated on at our Institution between March 2018 and December 2020. We collected pre- and post-surgical images, anamnestic information, and surgical reports. RESULTS Two hundred cases were collected. The GBM localization was periventricular in 69.5% of cases, and there was a VE during the surgical procedure in 51% of cases. The risk of post-surgical LMD in the case of VE was 16%. The rate of LMD was higher in the case of VE than not-VE (27.4% vs. 4%, p < 0.0001). The rate of LMD in periventricular GBM was 19% (p = 0.1131). CONCLUSION According to our data, VE is an independent factor associated with a higher rate of post-surgical LMD, and the periventricular localization is not independently correlated to this negative outcome. Neurosurgeons should avoid VE when possible. The correct surgical strategy should be founded on balancing the need for maximal EOR and the risks associated with VE.
Collapse
Affiliation(s)
- Francesca Battista
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Largo Palagi 1, 50137 Florence, Italy
| | - Giovanni Muscas
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Largo Palagi 1, 50137 Florence, Italy
| | - Francesca Dinoi
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Largo Palagi 1, 50137 Florence, Italy
| | - Davide Gadda
- Department of Neuro-Radiology, Careggi Hospital and University of Florence, Florence, Italy
| | - Alessandro Della Puppa
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Largo Palagi 1, 50137 Florence, Italy
| |
Collapse
|
9
|
Chen J, Yang F, Shi Q, Zhao Y, Huang H. A Retrospective Study on Spinal Dissemination of Supratentorial Glioma. Front Oncol 2021; 11:765399. [PMID: 35004286 PMCID: PMC8727749 DOI: 10.3389/fonc.2021.765399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Metastatic spinal dissemination (MSD) of supratentorial glioma is very rare and there is no established standard of care. The current study investigates the clinical characteristics and course of spinal dissemination of supratentorial glioma. METHODS A retrospective analysis of adult patients with MSD of supratentorial glioma treated in the Department of Oncology in Beijing Shijitan Hospital, Capital Medical University from June 2012 until August 2021 was performed. The time to event was estimated using Kaplan-Meier analysis. Univariate analyses were performed using log-rank test and multivariate analysis was performed using the Cox proportional hazards model. RESULTS Thirty-four adult patients with MSD of supratentorial glioma were enrolled in this retrospective study. The median time to MSD (TTMSD) and overall survival (OS) were 5 months (range: 0-78 months) and 15 months (range: 0.7-85 months), respectively, in the entire cohort. Univariate analysis demonstrated that the patients who had received TMZ therapy had a longer TTMSD than those who did not (mTTMSD: 15 vs. 3 months, log-rank P = 0.0004). Furthermore, a protracted duration of salvage chemotherapy of >6 months after MSD was associated with longer OS of the patients with MSD of supratentorial glioma (mOS: 13 vs. 5 months, log-rank P = 0.0163) and reduced the death risk by 64.3% (hazard ratio: 0.357, 95% CI: 0.141-0.901, P = 0.029) compared with a duration ≤6 months. CONCLUSION Patients with MSD of supratentorial glioma experienced poor prognosis and adjuvant chemotherapy may delay the occurrence of MSD. The protracted duration of systemic salvage chemotherapy may favor survival after spinal dissemination.
Collapse
Affiliation(s)
| | | | | | | | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Kim KH, Yoo J, Kim N, Moon JH, Byun HK, Kang SG, Chang JH, Yoon HI, Suh CO. Efficacy of Whole-Ventricular Radiotherapy in Patients Undergoing Maximal Tumor Resection for Glioblastomas Involving the Ventricle. Front Oncol 2021; 11:736482. [PMID: 34621677 PMCID: PMC8490925 DOI: 10.3389/fonc.2021.736482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Patients with glioblastoma (GBM) involving the ventricles are at high risk of ventricle opening during surgery and potential ventricular tumor spread. We evaluated the effectiveness of whole-ventricular radiotherapy (WVRT) in reducing intraventricular seeding in patients with GBM and identified patients who could benefit from this approach. Methods and Materials We retrospectively reviewed the data of 382 patients with GBM who underwent surgical resection and temozolomide-based chemoradiotherapy. Propensity score matching was performed to compensate for imbalances in characteristics between patients who did [WVRT (+); n=59] and did not [WVRT (–); n=323] receive WVRT. Local, outfield, intraventricular, and leptomeningeal failure rates were compared. Results All patients in the WVRT (+) group had tumor ventricular involvement and ventricle opening during surgery. In the matched cohort, the WVRT (+) group exhibited a significantly lower 2-year intraventricular failure rate than the WVRT (–) group (2.1% vs. 11.8%; P=0.045), with no difference in other outcomes. Recursive partitioning analysis stratified the patients in the WVRT (–) group at higher intraventricular failure risk (2-year survival, 14.2%) due to tumor ventricular involvement, MGMT unmethylation, and ventricle opening. WVRT reduced the intraventricular failure rate only in high-risk patients (0% vs. 14.2%; P=0.054) or those with MGMT-unmethylated GBM in the matched cohort (0% vs. 17.3%; P=0.036). Conclusions WVRT reduced the intraventricular failure rate in patients with tumor ventricular involvement and ventricle opening during surgery. The MGMT-methylation status may further stratify patients who could benefit from WVRT. Further prospective evaluation of WVRT in GBM is warranted.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| |
Collapse
|
11
|
Fujita Y, Nagashima H, Tanaka K, Hashiguchi M, Itoh T, Sasayama T. Hyperintense signal on diffusion-weighted imaging for monitoring the acute response and local recurrence after photodynamic therapy in malignant gliomas. J Neurooncol 2021; 155:81-92. [PMID: 34550511 DOI: 10.1007/s11060-021-03845-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/11/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Photodynamic therapy (PDT) subsequent to surgical tumor removal is a novel localized treatment for malignant glioma that provides effective local control. The acute response of malignant glioma to PDT can be detected as linear transient hyperintense signal on diffusion-weighted imaging (DWI) and a decline in apparent diffusion coefficient values without symptoms. However, their long-term clinical significance has not yet been examined. The aim of this study was to clarify the link between hyperintense signal on DWI as an acute response and recurrence after PDT in malignant glioma. METHODS Thirty patients (16 men; median age, 60.5 years) underwent PDT for malignant glioma at our institution between 2017 and 2020. We analyzed the signal changes on DWI after PDT and the relationship between these findings and the recurrence pattern. RESULTS All patients showed linear hyperintense signal on DWI at the surface of the resected cavity from day 1 after PDT. These changes disappeared in about 30 days without any neurological deterioration. During a mean post-PDT follow-up of 14.3 months, 19 patients (63%) exhibited recurrence: 10 local, 1 distant, and 8 disseminated. All of the local recurrences arose from areas that did not show hyperintense signal on DWI obtained on day 1 after PDT. CONCLUSIONS The local recurrence in malignant glioma after PDT occurs in an area without hyperintense signal on DWI as an acute response to PDT. This characteristic finding could aid in the monitoring of local recurrence after PDT.
Collapse
Affiliation(s)
- Yuichi Fujita
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Hiroaki Nagashima
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Mitsuru Hashiguchi
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
12
|
Battista F, Muscas G, Scoccianti S, Buccoliero AM, Gadda D, Della Puppa A. Brain low-grade gliomas with high-grade spinal localization. Report of a clinical case and systematic literature review. J Neurosurg Sci 2021; 66:151-157. [PMID: 34545732 DOI: 10.23736/s0390-5616.21.05446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Oncological aggressiveness and the ability to present distant localizations are known in high-grade gliomas (HGGs), but the knowledge about the possible aggressiveness of LGGs is scarce, especially concerning possible spinal localization. EVIDENCE ACQUISITION A systematic search of LGGs with spinal localization on the three primary online databases (PubMed/MEDLINE, Embase, and Cochrane) was conducted. We included adult patients with histological diagnosis of intracranial LGG and specified WHO grade showing a remote spinal localization during follow-up. Additionally, we present a case of a left temporal LGG presenting a spinal localization fourteen years after the first appearance. We compared the survival rates of LGGs in our series with those of LGGs without spinal localizations. EVIDENCE SYNTHESIS Seven articles dealing with the subject and eight patients were considered (including our case), with a mean age at diagnosis of 42.25 years (range 26-69 years). The mean latency between a diagnosis of intracranial LGGs and a spinal localization occurrence was 7.37 years (range 2-14 years), and an increased WHO grade of the spinal localization compared to the brain LGG was observed in all patients. There was no sign of intracranial progression at the time of spinal glioma diagnosis in four cases, including ours. Survival at ten years was 28% against a 10-year survival rate of 65-71% for LGGs without distant localization, as reported in the literature. CONCLUSIONS Spinal metastasis of intracranial LGGs is an adverse prognostic factor. Surgical violation of ventricles can play a role in the pathophysiology of CSF spread of tumor cells in LGGs.
Collapse
Affiliation(s)
- Francesca Battista
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Florence, Italy -
| | - Giovanni Muscas
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Florence, Italy
| | - Silvia Scoccianti
- Department of Radiation Oncology, Santa Maria Annunziata Hospital, Florence, Italy
| | - Anna Maria Buccoliero
- Pathology Unit, Meyer Children's Hospital and University of Florence, Florence, Italy
| | - Davide Gadda
- Department of Neuroradiology, Careggi University Hospital and University of Florence, Florence, Italy
| | - Alessandro Della Puppa
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Osada Y, Saito R, Shibahara I, Sasaki K, Shoji T, Kanamori M, Sonoda Y, Kumabe T, Watanabe M, Tominaga T. H3K27M and TERT promoter mutations are poor prognostic factors in surgical cases of adult thalamic high-grade glioma. Neurooncol Adv 2021; 3:vdab038. [PMID: 34013205 PMCID: PMC8117440 DOI: 10.1093/noajnl/vdab038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Thalamic high-grade gliomas (HGGs) are rare tumors with a dismal prognosis. H3K27M and telomerase reverse transcriptase promoter (TERTp) mutations reportedly contribute to poor prognoses in HGG cases. We investigated the outcomes of surgically treated adult thalamic HGGs to evaluate the prognostic significance of H3K27M and TERTp mutations. Methods We retrospectively analyzed 25 adult patients with thalamic HGG who underwent maximum surgical resection from January 1997 to March 2020. The histological and molecular characteristics, progression-free survival (PFS), and overall survival (OS) of the patients were compared. For molecular characteristics, target sequencing was used to determine the H3F3A, HIST1H3B, and TERTp mutations. Results H3K27M mutations were detected in 12/25 (48.0%) patients. TERTp mutations were not detected in H3K27M-mutant gliomas but were detected in 8/13 (61.5%) of H3 wild-type gliomas. Although it was not significant, H3K27M-mutant gliomas tended to have a shorter PFS (6.7 vs 13.1 months; P = .2928) and OS (22.8 vs 24.4 months; P = .2875) than H3 wild-type gliomas. Moreover, the prognosis of TERTp-mutant gliomas was as poor as that of H3K27M-mutant gliomas. Contrary, 5 gliomas harboring both H3 and TERTp wild-type showed a better median PFS (59.2 vs 6.4 months; P = .0456) and OS (71.8 vs 24.4 months; P = .1168) than those harboring H3K27M or TERTp mutations. Conclusions TERTp-mutant gliomas included in the H3 wild-type glioma group limited patient survival as they exhibited an aggressive course similar to H3K27M-mutant gliomas. Comprehensive molecular work-up for the H3 wild-type cases may further confirm this finding.
Collapse
Affiliation(s)
- Yoshinari Osada
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University Graduate School of Medicine, Kanagawa, Japan
| | - Keisuke Sasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuhiro Shoji
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University Graduate School of Medicine, Yamagata, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University Graduate School of Medicine, Kanagawa, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Birzu C, Tran S, Bielle F, Touat M, Mokhtari K, Younan N, Psimaras D, Hoang‐Xuan K, Sanson M, Delattre J, Idbaih A. Leptomeningeal Spread in Glioblastoma: Diagnostic and Therapeutic Challenges. Oncologist 2020; 25:e1763-e1776. [PMID: 33394574 PMCID: PMC7648332 DOI: 10.1634/theoncologist.2020-0258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. Leptomeningeal spread (LMS) is a severe complication of GBM, raising diagnostic and therapeutic challenges in clinical routine. METHODS We performed a review of the literature focused on LMS in GBM. MEDLINE and EMBASE databases were queried from 1989 to 2019 for articles describing diagnosis and therapeutic options in GBM LMS, as well as risk factors and pathogenic mechanisms. RESULTS We retrieved 155 articles, including retrospective series, case reports, and early phase clinical trials, as well as preclinical studies. These articles confirmed that LMS in GBM remains (a) a diagnostic challenge with cytological proof of LMS obtained in only 35% of cases and (b) a therapeutic challenge with a median overall survival below 2 months with best supportive care alone. For patients faced with suggestive clinical symptoms, whole neuroaxis magnetic resonance imaging and cerebrospinal fluid analysis are both recommended. Liquid biopsies are under investigation and may help prompt a reliable diagnosis. Based on the literature, a multimodal and personalized therapeutic approach of LMS, including surgery, radiotherapy, systemic cytotoxic chemotherapy, and intrathecal chemotherapies, may provide benefits to selected patients. Interestingly, molecular targeted therapies appear promising in case of actionable molecular target and should be considered. CONCLUSION As the prognosis of glioblastoma is improving over time, LMS becomes a more common complication. Our review highlights the need for translational studies and clinical trials dedicated to this challenging condition in order to improve diagnostic and therapeutic strategies. IMPLICATIONS FOR PRACTICE This review summarizes the diagnostic tools and applied treatments for leptomeningeal spread, a complication of glioblastoma, as well as their outcomes. The importance of exhaustive molecular testing for molecular targeted therapies is discussed. New diagnostic and therapeutic strategies are outlined, and the need for translational studies and clinical trials dedicated to this challenging condition is highlighted.
Collapse
Affiliation(s)
- Cristina Birzu
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Suzanne Tran
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neuropathologie‐EscourolleParisFrance
| | - Franck Bielle
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neuropathologie‐EscourolleParisFrance
| | - Mehdi Touat
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Karima Mokhtari
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neuropathologie‐EscourolleParisFrance
| | - Nadia Younan
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Dimitri Psimaras
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Khe Hoang‐Xuan
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Marc Sanson
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Jean‐Yves Delattre
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| | - Ahmed Idbaih
- Sorbonne Université, INSERM, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Assistance Publique–Hôpitaux de Paris (AP‐HP), Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix Service de Neurologie 2‐MazarinParisFrance
| |
Collapse
|
15
|
Mistry AM, Kelly PD, Gallant JN, Mummareddy N, Mobley BC, Thompson RC, Chambless LB. Comparative Analysis of Subventricular Zone Glioblastoma Contact and Ventricular Entry During Resection in Predicting Dissemination, Hydrocephalus, and Survival. Neurosurgery 2020; 85:E924-E932. [PMID: 31058968 DOI: 10.1093/neuros/nyz144] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ventricular entry during glioblastoma resection and tumor contact with the subventricular zone (SVZ) have both been shown to associate with development of hydrocephalus, leptomeningeal dissemination, distant parenchymal recurrence, and decreased survival. However, prior studies did not analyze these variables together in a single-patient population; therefore, it is unknown which is an independent predictor of these outcomes. OBJECTIVE To conduct a comparative outcome analysis of surgical ventricular entry and SVZ contact by glioblastoma in a retrospective cohort of 232 patients. METHODS Outcomes studied included hydrocephalus, leptomeningeal dissemination, distant tumor recurrences, and progression-free (PFS) and overall (OS) survival. The Cox proportional regression analyses were adjusted for age at diagnosis, preoperative Karnofsky performance status score, extent of resection, temozolomide and radiation treatments, and tumor molecular status (specifically, IDH1/2 mutation and MGMT promoter methylation). RESULTS Surgical ventricular entry, SVZ-contacting glioblastoma, hydrocephalus, leptomeningeal dissemination, and distant recurrences were observed in 85 (36.6%), 114 (49.1%), 19 (8.2%), 78 (33.6%), and 59 (25.4%) patients, respectively. Multivariate, adjusted analysis revealed SVZ tumor contact-but not ventricular entry-associated with hydrocephalus (hazard ratio, HR, 4.20 [1.13-15.7], P = .03), leptomeningeal dissemination (HR 1.93 [1.14-3.28], P = .01), PFS (HR 2.10 [1.53-2.88], P < .001), and OS (HR 1.90 [1.35-2.67], P < .001). Distant recurrences were not associated with either. No interaction between the 2 variables was statistically noted. CONCLUSION SVZ contact by glioblastoma was independently associated with the development of hydrocephalus, leptomeningeal dissemination, and decreased survival. SVZ tumor contact was associated with ventricular entry during surgical resections, which did not independently correlate with these outcomes.
Collapse
Affiliation(s)
- Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patrick D Kelly
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lola B Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
Supratentorial high-grade astrocytoma with leptomeningeal spread to the fourth ventricle: a lethal dissemination with dismal prognosis. J Neurooncol 2019; 142:253-261. [PMID: 30604394 DOI: 10.1007/s11060-018-03086-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Leptomeningeal spread to the fourth ventricle (LSFV) from supratentorial high-grade astrocytoma (HGA) is rarely investigated. The incidence and prognostic merit of LSFV were analyzed in this study. METHODS A consecutive cohort of 175 patients with pathologically diagnosed HGA according to the 2016 WHO classification of brain tumors was enrolled. LSFV was defined as radiological occupation in the fourth ventricle at the moment of initial progression. Clinical, radiological, and pathological data were analyzed to explore the difference between HGA patients with and without LSFV. RESULTS There were 18 of 175 (10.3%) HGAs confirmed with LSFV. The difference of survival rate between patients with LSFV or not was significant in both overall survival (OS) (14.5 vs. 24 months, P = 0.0007) and post progression survival (PPS) (6.0 vs. 11.5 months, P = 0.0004), while no significant difference was observed in time to progression (TTP) (8.5 months vs. 9.5 months P = 0.6795). In the Cox multivariate analysis, LSFV was confirmed as an independent prognostic risk factor for OS (HR 2.06, P = 0.010). LSFV was correlated with younger age (P = 0.044), ventricle infringement of primary tumor (P < 0.001) and higher Ki-67 index (P = 0.013) in further analysis, and the latter two have been validated in the Logistic regression analysis (OR 18.16, P = 0.006; OR 4.04, P = 0.012, respectively). CONCLUSION LSFV was indicative of end-stage for supratentorial HGA patients, which shortened patients' PPS and OS instead of TTP. It's never too cautious to alert this lethal event when tumor harbored ventricle infringement and higher Ki-67 index in routine clinical course.
Collapse
|