1
|
Lo Cascio C, Margaryan T, Luna-Melendez E, McNamara JB, White CI, Knight W, Ganta S, Opachich Z, Cantoni C, Yoo W, Sanai N, Tovmasyan A, Mehta S. Quisinostat is a brain-penetrant radiosensitizer in glioblastoma. JCI Insight 2023; 8:e167081. [PMID: 37991020 PMCID: PMC10721329 DOI: 10.1172/jci.insight.167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors have garnered considerable interest for the treatment of adult and pediatric malignant brain tumors. However, owing to their broad-spectrum nature and inability to effectively penetrate the blood-brain barrier, HDAC inhibitors have failed to provide substantial clinical benefit to patients with glioblastoma (GBM) to date. Moreover, global inhibition of HDACs results in widespread toxicity, highlighting the need for selective isoform targeting. Although no isoform-specific HDAC inhibitors are currently available, the second-generation hydroxamic acid-based HDAC inhibitor quisinostat possesses subnanomolar specificity for class I HDAC isoforms, particularly HDAC1 and HDAC2. It has been shown that HDAC1 is the essential HDAC in GBM. This study analyzed the neuropharmacokinetic, pharmacodynamic, and radiation-sensitizing properties of quisinostat in preclinical models of GBM. It was found that quisinostat is a well-tolerated and brain-penetrant molecule that extended survival when administered in combination with radiation in vivo. The pharmacokinetic-pharmacodynamic-efficacy relationship was established by correlating free drug concentrations and evidence of target modulation in the brain with survival benefit. Together, these data provide a strong rationale for clinical development of quisinostat as a radiosensitizer for the treatment of GBM.
Collapse
Affiliation(s)
- Costanza Lo Cascio
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Tigran Margaryan
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ernesto Luna-Melendez
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - James B. McNamara
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Connor I. White
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - William Knight
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Saisrinidhi Ganta
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Zorana Opachich
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Claudia Cantoni
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Wonsuk Yoo
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nader Sanai
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Artak Tovmasyan
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center and
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
2
|
Peruzzi P, Dominas C, Fell G, Bernstock JD, Blitz S, Mazzetti D, Zdioruk M, Dawood HY, Triggs DV, Ahn SW, Bhagavatula SK, Davidson SM, Tatarova Z, Pannell M, Truman K, Ball A, Gold MP, Pister V, Fraenkel E, Chiocca EA, Ligon KL, Wen PY, Jonas O. Intratumoral drug-releasing microdevices allow in situ high-throughput pharmaco phenotyping in patients with gliomas. Sci Transl Med 2023; 15:eadi0069. [PMID: 37672566 PMCID: PMC10754230 DOI: 10.1126/scitranslmed.adi0069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
The lack of reliable predictive biomarkers to guide effective therapy is a major obstacle to the advancement of therapy for high-grade gliomas, particularly glioblastoma (GBM), one of the few cancers whose prognosis has not improved over the past several decades. With this pilot clinical trial (number NCT04135807), we provide first-in-human evidence that drug-releasing intratumoral microdevices (IMDs) can be safely and effectively used to obtain patient-specific, high-throughput molecular and histopathological drug response profiling. These data can complement other strategies to inform the selection of drugs based on their observed antitumor effect in situ. IMDs are integrated into surgical practice during tumor resection and remain in situ only for the duration of the otherwise standard operation (2 to 3 hours). None of the six enrolled patients experienced adverse events related to the IMD, and the exposed tissue was usable for downstream analysis for 11 out of 12 retrieved specimens. Analysis of the specimens provided preliminary evidence of the robustness of the readout, compatibility with a wide array of techniques for molecular tissue interrogation, and promising similarities with the available observed clinical-radiological responses to temozolomide. From an investigational aspect, the amount of information obtained with IMDs allows characterization of tissue effects of any drugs of interest, within the physiological context of the intact tumor, and without affecting the standard surgical workflow.
Collapse
Affiliation(s)
- Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Christine Dominas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA
| | - Geoffrey Fell
- Department of Data Science, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Sarah Blitz
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Mykola Zdioruk
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Hassan Y. Dawood
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Daniel V. Triggs
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA
| | - Sharath K. Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA
| | - Shawn M. Davidson
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Zuzana Tatarova
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA
| | - Michael Pannell
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Kyla Truman
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Anna Ball
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Maxwell P. Gold
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Veronika Pister
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Keith L. Ligon
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Patrick Y. Wen
- Division of Neuro-Oncology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
3
|
Cho NS, Wong WK, Nghiemphu PL, Cloughesy TF, Ellingson BM. The Future Glioblastoma Clinical Trials Landscape: Early Phase 0, Window of Opportunity, and Adaptive Phase I-III Studies. Curr Oncol Rep 2023; 25:1047-1055. [PMID: 37402043 PMCID: PMC10474988 DOI: 10.1007/s11912-023-01433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE OF REVIEW Innovative clinical trial designs for glioblastoma (GBM) are needed to expedite drug discovery. Phase 0, window of opportunity, and adaptive designs have been proposed, but their advanced methodologies and underlying biostatistics are not widely known. This review summarizes phase 0, window of opportunity, and adaptive phase I-III clinical trial designs in GBM tailored to physicians. RECENT FINDINGS Phase 0, window of opportunity, and adaptive trials are now being implemented for GBM. These trials can remove ineffective therapies earlier during drug development and improve trial efficiency. There are two ongoing adaptive platform trials: GBM Adaptive Global Innovative Learning Environment (GBM AGILE) and the INdividualized Screening trial of Innovative GBM Therapy (INSIGhT). The future clinical trials landscape in GBM will increasingly involve phase 0, window of opportunity, and adaptive phase I-III studies. Continued collaboration between physicians and biostatisticians will be critical for implementing these trial designs.
Collapse
Affiliation(s)
- Nicholas S Cho
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Weng Kee Wong
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Yoo W, Kim S, Garcia M, Mehta S, Sanai N. Evaluation of two-stage designs of Phase 2 single-arm trials in glioblastoma: a systematic review. BMC Med Res Methodol 2022; 22:327. [PMID: 36550391 PMCID: PMC9773486 DOI: 10.1186/s12874-022-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to economical and ethical reasons, the two-stage designs have been widely used for Phase 2 single-arm trials in oncology because the designs allow us to stop the trial early if the proposed treatment is likely to be ineffective. Nonetheless, none has examined the usage for published articles that had applied the two-stage designs in Phase 2 single-arm trials in brain tumor. A complete systematic review and discussions for overcoming design issues might be important to better understand why oncology trials have shown low success rates in early phase trials. METHODS We systematically reviewed published single-arm two-stage Phase 2 trials for patients with glioblastoma and high-grade gliomas (including newly diagnosed or recurrent). We also sought to understand how these two-stage trials have been implemented and discussed potential design issues which we hope will be helpful for investigators who work with Phase 2 clinical trials in rare and high-risk cancer studies including Neuro-Oncology. The systematic review was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-statement. Searches were conducted using the electronic database of PubMed, Google Scholar and ClinicalTrials.gov for potentially eligible publications from inception by two independent researchers up to May 26, 2022. The followings were key words for the literature search as index terms or free-text words: "phase II trials", "glioblastoma", and "two-stage design". We extracted disease type and setting, population, therapeutic drug, primary endpoint, input parameters and sample size results from two-stage designs, and historical control reference, and study termination status. RESULTS Among examined 29 trials, 12 trials (41%) appropriately provided key input parameters and sample size results from two-stage design implementation. Among appropriately implemented 12 trials, discouragingly only 3 trials (10%) explained the reference information of historical control rates. Most trials (90%) used Simon's two-stage designs. Only three studies have been completed for both stages and two out of the three completed studies had shown the efficacy. CONCLUSIONS Right implementation for two-stage design and sample size calculation, transparency of historical control and experimental rates, appropriate selection on primary endpoint, potential incorporation of adaptive designs, and utilization of Phase 0 paradigm might help overcoming the challenges on glioblastoma therapeutic trials in Phase 2 trials.
Collapse
Affiliation(s)
- Wonsuk Yoo
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Seongho Kim
- grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201 USA
| | - Michael Garcia
- grid.427785.b0000 0001 0664 3531Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Shwetal Mehta
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Nader Sanai
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| |
Collapse
|
5
|
Halkett GKB, Breen LJ, Berg M, Sampson R, Sim HW, Gan HK, Kong BY, Nowak AK, Day BW, Harrup R, James M, Saran F, Mcfarlane B, Tse C, Koh ES. Determining the Research Priorities for Adult Primary Brain Tumours in Australia and New Zealand: A Delphi Study with Consumers, Health Professionals, and Researchers. Curr Oncol 2022; 29:9928-9955. [PMID: 36547195 PMCID: PMC9777470 DOI: 10.3390/curroncol29120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this project was to determine research priorities, barriers, and enablers for adult primary brain tumour research in Australia and New Zealand. Consumers, health professionals, and researchers were invited to participate in a two-phase modified Delphi study. Phase 1 comprised an initial online survey (n = 91) and then focus groups (n = 29) which identified 60 key research topics, 26 barriers, and 32 enablers. Phase 2 comprised two online surveys to (1) reduce the list to 37 research priorities which achieved consensus (>75% 2-point agreement) and had high mean importance ratings (n = 116 participants) and (2) determine the most important priorities, barriers, and enablers (n = 90 participants). The top ten ranked research priorities for the overall sample and sub-groups (consumers, health professionals, and researchers) were identified. Priorities focused on: tumour biology, pre-clinical research, clinical and translational research, and supportive care. Variations were seen between sub-groups. The top ten barriers to conducting brain tumour research related to funding and resources, accessibility and awareness of research, collaboration, and process. The top ten research enablers were funding and resources, collaboration, and workforce. The broad list of research priorities identified by this Delphi study, together with how consumers, health professionals, and researchers prioritised items differently, and provides an evidence-based research agenda for brain tumour research that is needed across a wide range of areas.
Collapse
Affiliation(s)
- Georgia K. B. Halkett
- Curtin School of Nursing/Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Lauren J. Breen
- Curtin School of Population Health/Curtin enAble Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Melissa Berg
- Curtin School of Nursing/Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Nursing and Midwifery, Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - Rebecca Sampson
- Curtin School of Nursing/Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Hao-Wen Sim
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW 2050, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Hui K. Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Medicine, University of Melbourne, Carlton, VIC 3010, Australia
| | - Benjamin Y. Kong
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Anna K. Nowak
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Melissa James
- Canterbury Regional Cancer and Haematology Service, Christchurch 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Frank Saran
- Department of Blood and Cancer, Auckland City Hospital, Auckland 1023, New Zealand
| | - Brett Mcfarlane
- Cooperative Trials Group for Neuro-Oncology (COGNO), Camperdown, NSW 2050, Australia
| | - Chris Tse
- Brain Tumour Support NZ, Hamilton 3210, New Zealand
- International Brain Tumour Alliance, London W1B 2AD, UK
| | - Eng-Siew Koh
- South West Sydney Clinical School, UNSW Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| |
Collapse
|
6
|
Bhanja D, Neighbors J, Connor J, Zadeh G, Mansouri A. Neuropharmacological Study of Posaconazole for Glioblastoma: A Phase 0 Clinical Trial Protocol. Neurosurgery 2022; 91:658-665. [PMID: 35861778 PMCID: PMC10553142 DOI: 10.1227/neu.0000000000002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant primary brain tumor with a universally poor prognosis. GBMs express elevated levels of hexokinase 2 (HK2), catalyzing the critical step in glycolysis and influencing several oncogenic pathways. Previous preclinical work has suggested a role for repurposed posaconazole (PCZ) in downregulating HK2 activity, reducing lactate and pyruvate production, interfering with tumor cell metabolism, and increasing mouse survival. OBJECTIVE To establish brain tumor penetrance, neuropharmacokinetic profile, and mechanistic effect on tumor cell metabolism of PCZ in adults with GBM. METHODS This is an open label, nonrandomized, parallel arm trial involving patients with GBM. Cohorts will receive PCZ (intervention, n = 5) or will not receive PCZ (control, n = 5), followed by tumor resection and microdialysis catheter placement. Dialysate, plasma, and tumor samples will be analyzed for lactate and pyruvate concentrations. Tumor samples will also be assessed for PCZ concentration, HK2 expression, angiogenesis, and apoptosis. PCZ's neuropharmacokinetics will be determined based on the concentration vs time profile and area under the curve 0 to 24 hours of PCZ concentration in the brain interstitium. EXPECTED OUTCOMES (1) Increased PCZ concentration in contrast-enhancing brain regions compared with nonenhancing regions; (2) inverse correlation between lactate/pyruvate and PCZ concentrations in dialysate samples from treated patients, over time; and (3) decreased HK2 activity in PCZ-treated tumor samples. DISCUSSION A successful trial will support the decision to proceed to advanced phase trials. Any tumor penetration by PCZ, with concomitant effect on glycolysis, warrants further in-depth analysis, as therapeutic options for these deadly tumors are currently limited.
Collapse
Affiliation(s)
- Debarati Bhanja
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jeffrey Neighbors
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gelareh Zadeh
- Department of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
8
|
Ye X, Schreck KC, Ozer BH, Grossman SA. High-grade glioma therapy: adding flexibility in trial design to improve patient outcomes. Expert Rev Anticancer Ther 2022; 22:275-287. [PMID: 35130447 DOI: 10.1080/14737140.2022.2038138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Outcomes for patients with high grade gliomas have changed little over the past thirty years. This realization prompted renewed efforts to increase flexibility in the design and conduct of clinical brain tumor trials. AREAS COVERED This manuscript reviews the development of clinical trial methods, challenges and considerations of flexible clinical trial designs, approaches to improve identification and testing of active agents for high grade gliomas, and evaluation of their delivery to the central nervous system. EXPERT OPINION Flexibility can be introduced in clinical trials in several ways. Flexible designs tout smaller sample sizes, adaptive modifications, fewer control arms, and inclusion of multiple arms in one study. Unfortunately, modifications in study designs cannot address two challenges that are largely responsible for the lack of progress in treating high grade gliomas: 1) the identification of active pharmaceutical agents and 2) the delivery of these agents to brain tumor tissue in therapeutic concentrations. To improve the outcomes of patients with high grade gliomas efforts must be focused on the pre-clinical screening of drugs for activity, the ability of these agents to achieve therapeutic concentrations in non-enhancing tumors, and a willingness to introduce novel compounds in minimally pre-treated patient populations.
Collapse
Affiliation(s)
- Xiaobu Ye
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| | - Karisa C Schreck
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| | - Byram H Ozer
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| | - Stuart A Grossman
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| |
Collapse
|
9
|
Abstract
Despite significant improvement in understanding of molecular underpinnings driving glioblastoma, there is minimal improvement in overall survival of patients. This poor outcome is caused in part by traditional designs of early phase clinical trials, which focus on clinical assessments of drug toxicity and response. Window of opportunity trials overcome this shortcoming by assessing drug-induced on-target molecular alterations in post-treatment human tumor specimens. This article provides an overview of window of opportunity trials, including novel designs for incorporating biologic end points into early stage trials in context of brain tumors, and examples of successfully executed window of opportunity trials for glioblastoma.
Collapse
|
10
|
Pierce CF, Kwasnicki A, Lakka SS, Engelhard HH. Cerebral Microdialysis as a Tool for Assessing the Delivery of Chemotherapy in Brain Tumor Patients. World Neurosurg 2020; 145:187-196. [PMID: 32890850 DOI: 10.1016/j.wneu.2020.08.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/27/2022]
Abstract
The development of curative treatment for glioblastoma has been extremely challenging. Chemotherapeutic agents that have seemed promising have failed in clinical trials. Drugs that can successfully target cancer cells within the brain must first traverse the brain interstitial fluid. Cerebral microdialysis (CMD) is an invasive technique in which interstitial fluid can be directly sampled. CMD has primarily been used clinically in the setting of head trauma and subarachnoid hemorrhage. Our goal was to review the techniques, principles, and new data pertaining to CMD to highlight its use in neuro-oncology. We conducted a literature search using the PubMed database and selected studies in which the investigators had used CMD in either animal brain tumor models or clinical trials. The references were reviewed for additional information. Studies of CMD have shown its importance as a neurosurgical technique. CMD allows for the collection of pharmacokinetic data on drug penetrance across the blood-brain barrier and metabolic data to characterize the response to chemotherapy. Although no complications have been reported, the current CMD technique (as with any procedure) has risks and limitations, which we have described in the present report. Animal CMD experiments have been used to exclude central nervous system drug candidates from progressing to clinical trials. At present, patients undergoing CMD have been monitored in the intensive care unit, owing to the requisite tethering to the apparatus. This can be expected to change soon because of advances in microminiaturization. CMD is an extremely valuable, yet underused, technique. Future CMD applications will have central importance in assessing drug delivery to tumor cells in vivo, allowing a pathway to successful therapy for malignant brain tumors.
Collapse
Affiliation(s)
- Charles F Pierce
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amanda Kwasnicki
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sajani S Lakka
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|