1
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome: a Mendelian randomization study. Front Immunol 2024; 15:1403429. [PMID: 39253091 PMCID: PMC11381235 DOI: 10.3389/fimmu.2024.1403429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Currently, evidence regarding the causal relationship between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome is limited and inconsistent. Therefore, this study employs Mendelian randomization (MR) methodology to investigate the causal relationship between the two. Methods This study selected 110 single-nucleotide polymorphisms (SNPs) of primary immunodeficiency-related genes as instrumental variables (IVs). Genetic associations of primary immunodeficiency-related genes were derived from recent genome-wide association studies (GWAS) data on human plasma protein levels and circulating immune cells. Data on genes associated with varicella-zoster virus reactivation syndrome were obtained from the GWAS Catalog and FINNGEN database, primarily analyzed using inverse variance weighting (IVW) and sensitivity analysis. Results Through MR analysis, we identified 9 primary immunodeficiency-related genes causally associated with herpes zoster and its subsequent neuralgia; determined causal associations of 20 primary immunodeficiency-related genes with three vascular lesions (stroke, cerebral aneurysm, giant cell arteritis); revealed causal associations of 10 primary immunodeficiency-related genes with two ocular diseases (retinopathy, keratitis); additionally, three primary immunodeficiency-related genes each were associated with encephalitis, cranial nerve palsy, and gastrointestinal infections. Conclusions This study discovers a certain association between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome, yet further investigations are warranted to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Xu P, Liu Y, Wang J, Zhang A, Wang K, Wang Z, Fang Y, Wang X, Zhang J. Gender-specific prognosis models reveal differences in subarachnoid hemorrhage patients between sexes. CNS Neurosci Ther 2024; 30:e14894. [PMID: 39107957 PMCID: PMC11303446 DOI: 10.1111/cns.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) represents a severe stroke subtype. Our study aims to develop gender-specific prognostic prediction models derived from distinct prognostic factors observed among different-gender patients. METHODS Inclusion comprised SAH-diagnosed patients from January 2014 to March 2016 in our institution. Collected data encompassed patients' demographics, admission severity, treatments, imaging findings, and complications. Three-month post-discharge prognoses were obtained via follow-ups. Analyses assessed gender-based differences in patient information. Key factors underwent subgroup analysis, followed by univariate and multivariate analyses to identify gender-specific prognostic factors and establish/validate gender-specific prognostic models. RESULTS A total of 929 patients, with a median age of 57 (16) years, were analyzed; 372 (40%) were male, and 557 (60%) were female. Differences in age, smoking history, hypertension, aneurysm presence, and treatment interventions existed between genders (p < 0.01), yet no disparity in prognosis was noted. Subgroup analysis explored hypertension history, aneurysm presence, and treatment impact, revealing gender-specific variations in these factors' influence on the disease. Screening identified independent prognostic factors: age, SEBES score, admission GCS score, and complications for males; and age, admission GCS score, intraventricular hemorrhage, treatment interventions, symptomatic vasospasm, hydrocephalus, delayed cerebral ischemia, and seizures for females. Evaluation and validation of gender-specific models yielded an AUC of 0.916 (95% CI: 0.878-0.954) for males and 0.914 (95% CI: 0.885-0.944) for females in the ROC curve. Gender-specific prognostic models didn't significantly differ from the overall population-based model (model 3) but exhibited robust discriminative ability and clinical utility. CONCLUSION Variations in baseline and treatment-related factors among genders contribute partly to gender-based prognosis differences. Independent prognostic factors vary by gender. Gender-specific prognostic models exhibit favorable prognostic performance.
Collapse
Affiliation(s)
- Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yuchun Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of MedicineZhejiang University School of MedicineYiwuChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Zefeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
- Brain Research InstituteZhejiang UniversityZhejiangChina
- MOE Frontier Science Center for Brain Science & Brain‐Machine IntegrationZhejiang UniversityZhejiangChina
| |
Collapse
|
3
|
Chen C, Tang F, Zhu M, Wang C, Zhou H, Zhang C, Feng Y. Role of inflammatory mediators in intracranial aneurysms: A review. Clin Neurol Neurosurg 2024; 242:108329. [PMID: 38781806 DOI: 10.1016/j.clineuro.2024.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The formation, growth, and rupture of intracranial aneurysms (IAs) involve hemodynamics, blood pressure, external stimuli, and a series of hormonal changes. In addition, inflammatory response causes the release of a series of inflammatory mediators, such as IL, TNF-α, MCP-1, and MMPs, which directly or indirectly promote the development process of IA. However, the specific role of these inflammatory mediators in the pathophysiological process of IA remains unclear. Recently, several anti-inflammatory, lipid-lowering, hormone-regulating drugs have been found to have a potentially protective effect on reducing IA formation and rupture in the population. These therapeutic mechanisms have not been fully elucidated, but we can look for potential therapeutic targets that may interfere with the formation and breakdown of IA by studying the relevant inflammatory response and the mechanism of IA formation and rupture involved in inflammatory mediators.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Fengjiao Tang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Meng Zhu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China.
| |
Collapse
|
4
|
Dodd WS, Patel D, Laurent D, Lucke-Wold B, Hosaka K, Johnson RD, Chalouhi N, Butler AA, Candelario-Jalil E, Hoh BL. Subarachnoid hemorrhage-associated brain injury and neurobehavioral deficits are reversed with synthetic adropin treatment through sustained Ser1179 phosphorylation of endothelial nitric oxide synthase. FRONTIERS IN STROKE 2024; 3:1371140. [PMID: 39345725 PMCID: PMC11434178 DOI: 10.3389/fstro.2024.1371140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Subarachnoid hemorrhage (SAH) is a life-threatening vascular condition without satisfactory treatment options. The secreted peptide adropin is highly expressed in the human brain and has neuroprotective effects in brain injury models, including actions involving the cerebrovasculature. Here, we report an endothelial nitric oxide synthase (eNOS)-dependent effect of synthetic adropin treatment that reverses the deleterious effects of SAH. Methods We tested the molecular, cellular, and physiological responses of cultured brain microvascular endothelial cells and two mouse models of SAH to treatment using synthetic adropin peptide or vehicle. Results SAH decreases adropin expression in cultured brain microvascular endothelial cells and in murine brain tissue. In two validated mouse SAH models, synthetic adropin reduced cerebral edema, preserved tight junction protein expression, and abolished microthrombosis at 1 day post-SAH. Adropin treatment also prevented delayed cerebral vasospasm, decreased neuronal apoptosis, and reduced sensorimotor deficits at seven days post-SAH. Delaying initial treatment of adropin until 24 h post-SAH preserved the beneficial effect of adropin in preventing vasospasm and sensorimotor deficits. Mechanistically, adropin treatment increased eNOS phosphorylation (Ser1179) at 1 & 7 days post-SAH. Treating eNOS-/- mice with adropin failed to prevent vasospasm or behavioral deficits, indicating a requirement of eNOS signaling. Conclusions Adropin is an effective treatment for SAH, reducing cerebrovascular injury in both the acute (1 day) and delayed (7 days) phases. These findings establish the potential of adropin or adropin mimetics to improve outcomes following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- William S Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Devan Patel
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Dimitri Laurent
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Koji Hosaka
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Richard D Johnson
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Nohra Chalouhi
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Andrew A Butler
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Patel D, Dodd WS, Lucke‐Wold B, Chowdhury MAB, Hosaka K, Hoh BL. Neutrophils: Novel Contributors to Estrogen-Dependent Intracranial Aneurysm Rupture Via Neutrophil Extracellular Traps. J Am Heart Assoc 2023; 12:e029917. [PMID: 37889179 PMCID: PMC10727420 DOI: 10.1161/jaha.123.029917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/22/2023] [Indexed: 10/28/2023]
Abstract
Background Intracranial aneurysms (IAs) are more prevalent in women than men, and aneurysmal subarachnoid hemorrhage disproportionately affects postmenopausal women. These sex differences suggest estrogen protects against IA progression that can lead to rupture, but the underlying mechanisms are not fully understood. Although studies have demonstrated estrogen regulates inflammatory processes that contribute to IA pathogenesis, the role of neutrophils remains to be characterized. Using a murine model, we tested our hypothesis that neutrophils contribute to IA pathophysiology in an estrogen-dependent manner. Methods and Results We compared neutrophil infiltration in C57BL/6 female mice that develop IAs to those with a normal circle of Willis. Next, we investigated the estrogen-dependent role of neutrophils in IA formation, rupture, and symptom-free survival using a neutrophil depletion antibody. Finally, we studied the role of neutrophil extracellular trap formation (NETosis) as an underlying mechanism of aneurysm progression. Mice that developed aneurysms had increased neutrophil infiltration compared with those with a normal circle of Willis. In estrogen-deficient female mice, both neutrophil depletion and NETosis inhibition decreased aneurysm rupture. In estrogen-deficient female mice treated with estrogen rescue and estrogen-intact female mice, neither neutrophil depletion nor NETosis inhibition affected IA formation, rupture, or symptom-free survival. Conclusions Neutrophils contribute to aneurysm rupture in an estrogen-dependent manner. NETosis appears to be an underlying mechanism for neutrophil-mediated IA rupture in estrogen deficiency. Targeting NETosis may lead to the development of novel therapeutics to protect against IA rupture in the setting of estrogen deficiency.
Collapse
Affiliation(s)
- Devan Patel
- Department of NeurosurgeryUniversity of FloridaGainesvilleFLUSA
| | - William S. Dodd
- Department of NeurosurgeryUniversity of FloridaGainesvilleFLUSA
| | | | | | - Koji Hosaka
- Department of NeurosurgeryUniversity of FloridaGainesvilleFLUSA
| | - Brian L. Hoh
- Department of NeurosurgeryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
6
|
Peng K, Li Y, Adegboro AA, Wanggou S, Li X. Mood swings are causally associated with intracranial aneurysm subarachnoid hemorrhage: A Mendelian randomization study. Brain Behav 2023; 13:e3233. [PMID: 37632147 PMCID: PMC10636415 DOI: 10.1002/brb3.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Mood swings have been observed in patients with intracranial aneurysm (IA), but it is still unknown whether mood swings can affect IA. AIM To explore the causal association between mood swings or experiencing mood swings and IA through a two-sample Mendelian randomization (MR) study. METHODS Summary-level statistics of mood swings, experiencing mood swings, IA, aneurysm-associated subarachnoid hemorrhage (aSAH), and non-ruptured IA (uIA) were collected from the genome-wide association study. Two-sample MR and various sensitivity analyses were employed to explore the causal association between mood swings or experiencing mood swings and IA, or aSAH, or uIA. The inverse-variance weighted method was used as the primary method. RESULTS Genetically determined mood swings (odds ratio [OR] = 5.23, 95% confidence interval (95%CI): 1.65-16.64, p = .005) and experiencing mood swings (OR = 2.50, 95%CI: 1.37-4.57, p = .003) were causally associated with an increased risk of IA. Mood swings (OR = 5.67, 95%CI: 1.40-23.04, p = .015) and experiencing mood swings were causally associated with the risk of aSAH (OR = 2.91, 95%CI: 1.47-5.75, p = .002). Neither mood swings (OR = 1.95, 95%CI: .31-12.29, p = .478) nor experiencing mood swings (OR = 1.20, 95%CI: .48-3.03, p = .693) were associated with uIA. CONCLUSIONS Mood swings and experiencing mood swings increased the risk of IA and aSAH incidence. These results suggest that alleviating mood swings may reduce IA rupture incidence and aSAH incidence.
Collapse
Affiliation(s)
- Kang Peng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Yanwen Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Abraham Ayodeji Adegboro
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Siyi Wanggou
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| | - Xuejun Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor ResearchXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
7
|
Monsour M, Croci DM, Grüter BE, Taussky P, Marbacher S, Agazzi S. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors? Transl Stroke Res 2023; 14:631-639. [PMID: 36042111 DOI: 10.1007/s12975-022-01079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Intracranial aneurysm (IA) rupture is a common cause of subarachnoid hemorrhage (SAH) with high mortality and morbidity. Inflammatory interleukins (IL), such as IL-6, play an important role in the occurrence and rupture of IA causing SAH. With this review we aim to elucidate the specific role of IL-6 in aneurysm formation and rupture in preclinical and clinical studies. IL-6 is a novel cytokine in that it has pro-inflammatory and anti-inflammatory signaling pathways. In preclinical and clinical studies of IA formation, elevated and reduced levels of IL-6 are reported. Poor post-rupture prognosis and increased rupture risk, however, are associated with higher levels of IL-6. By better understanding the relationships between IL-6 and IA formation and rupture, IL-6 may serve as a biomarker in high-risk populations. Furthermore, by better understanding the IL-6 signaling mechanisms in IA formation and rupture, IL-6 may optimize surveillance and treatment strategies. This review examines the association between IL-6 and IA, while also suggesting future research directions.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Davide Marco Croci
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Basil E Grüter
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Serge Marbacher
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Nowicki KW, Mittal AM, Abou-Al-Shaar H, Rochlin EK, Lang MJ, Gross BA, Friedlander RM. A Future Blood Test to Detect Cerebral Aneurysms. Cell Mol Neurobiol 2023:10.1007/s10571-023-01346-4. [PMID: 37046105 DOI: 10.1007/s10571-023-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Intracranial aneurysms are reported to affect 2-5% of the population. Despite advances in the surgical management of this disease, diagnostic technologies have marginally improved and still rely on expensive or invasive imaging procedures. Currently, there is no blood-based test to detect cerebral aneurysm formation or quantify the risk of rupture. The aim of this review is to summarize current literature on the mechanism of aneurysm formation, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future blood-based test. Efforts should be focused on clinical-translational approaches to create an assay to screen for cerebral aneurysm presence and risk-stratify patients to allow for superior treatment timing and management. Cerebral Aneurysm Blood Test Considerations: There are multiple caveats to development of a putative blood test to detect cerebral aneurysm presence.
Collapse
Affiliation(s)
- Kamil W Nowicki
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Aditya M Mittal
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emma K Rochlin
- Loyola University Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Michael J Lang
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Ma Z, Zhong P, Yue P, Sun Z. Identification of immune-related molecular markers in intracranial aneurysm (IA) based on machine learning and cytoscape-cytohubba plug-in. BMC Genom Data 2023; 24:20. [PMID: 37041519 PMCID: PMC10088219 DOI: 10.1186/s12863-023-01121-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Intracranial aneurysm (IA) is a common cerebrovascular disease. The immune mechanism of IA is more complicated, and it is unclear so far. Therefore, it is necessary to continue to explore the immune related molecular mechanism of IA. METHODS All data were downloaded from the public database. Limma package and ssGSEA algorithm was used to identify differentially expressed mRNAs (DEmRNAs) and analyze immune cell infiltration, respectively. Machine learning and cytoscape-cytohubba plug-in was used to identify key immune types and multicentric DEmRNAs of IA, respectively. Multicentric DEmRNAs related to key immune cells were screened out as key DEmRNAs by Spearman correlation analysis. Diagnostic models, competing endogenous RNA (ceRNA) regulatory network and transcription factor regulatory network were constructed based on key DEmRNAs. Meanwhile, drugs related to key DEmRNAs were screened out based on DGIdb database. The expression of key DEmRNAs was also verified by real time-PCR. RESULTS In this study, 7 key DEmRNAs (NRXN1, GRIA2, SLC1A2, SLC17A7, IL6, VEGFA and SYP) associated with key differential immune cell infiltration (CD56bright natural killer cell, Immature B cell and Type 1 T helper cell) were identified. Functional enrichment analysis showed that VEGFA and IL6 may be involved in the regulation of the PI3K-Akt signaling pathway. Moreover, IL6 was also found to be enriched in cytokine-cytokine receptor interaction signaling pathway. In the ceRNA regulatory network, a large number of miRNAs and lncRNAs were found. In the transcription factor regulatory network, the transcription factor SP1 was correlated with VEGFA, SYP and IL6. It is also predicted that drugs related to key DEmRNAs such as CARBOPLATIN, FENTANYL and CILOSTAZOL may contribute to the treatment of IA. In addition, it was also found that SVM and RF models based on key DEmRNAs may be potential markers for diagnosing IA and unruptured intracranial aneurysm (UIA), respectively. The expression trend of key DEmRNAs verified by real-time PCR was consistent with the bioinformatics analysis results. CONCLUSION The identification of molecules and pathways in this study provides a theoretical basis for understanding the immune related molecular mechanism of IA. Meanwhile, the drug prediction and diagnosis model construction may also be helpful for clinical diagnosis and management.
Collapse
Affiliation(s)
- Zhengfei Ma
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, No. 299, Bianhe Zhong Lu District, Suzhou City, Hefei, 234000, China
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Ping Zhong
- Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Peidong Yue
- Department of Neurosurgery, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, No. 299, Bianhe Zhong Lu District, Suzhou City, Hefei, 234000, China.
| |
Collapse
|
10
|
Chen J, Liu J, Liu X, Zeng C, Chen Z, Li S, Zhang Q. Animal model contributes to the development of intracranial aneurysm: A bibliometric analysis. Front Vet Sci 2022; 9:1027453. [PMID: 36467643 PMCID: PMC9716216 DOI: 10.3389/fvets.2022.1027453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Studies on intracranial aneurysms (IAs) using animal models have evolved for decades. This study aimed to analyze major contributors and trends in IA-related animal research using bibliometric analysis. METHODS IA-related animal studies were retrieved from the Web of Science database. Microsoft Excel 2010, GraphPad Prism 6, VOSviewer, and CiteSpace were used to collect and analyze the characteristics of this field. RESULTS A total of 273 publications were retrieved. All publications were published between 1976 and 2021, and the peak publication year is 2019. Rat model were used in most of the publications, followed by mice and rabbits. Japan (35.5%), the United States (30.0%), and China (20.1%) were the top three most prolific countries. Although China ranks third in the number of publications, it still lacks high-quality articles and influential institutions. Stroke was the most prolific journal that accepted publications related to IA research using animal models. Circulation has the highest impact factor with IA-related animal studies. Hashimoto N contributed the largest number of articles. Meng hui journal published the first and second highest cited publications. The keywords "subarachnoid hemorrhage," "macrophage," "rupture," "mice," "elastase," "gene," "protein," "proliferation," and "risk factors" might be a new trend for studying IA-related animal research. CONCLUSIONS Japan and the Unites States contributed the most to IA-related animal studies, in terms of both researchers and institutions. Although China ranks third in terms of the number of publications, it should strengthen the quality of its publications. Researchers should pay attention to the latest progress of Stroke, Journal of Neurosurgery, Neurosurgery, and Circulation for their high-quality IA-related animal studies. Using animal IA models, especially mice, to investigate the molecular mechanisms of IA may be the frontier topic now and in future.
Collapse
Affiliation(s)
- Jia Chen
- Xiangya Nursing School, Central South University, Changsha, China
| | - Jing Liu
- Xiangya Nursing School, Central South University, Changsha, China
| | - Xin Liu
- The Chinese People's Liberation Army 921 Hospital of Joint Logistics Support Force, Department of General Practice, Changsha, China
| | - Chudai Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Lu T, Liu Z, Guo D, Ma C, Duan L, He Y, Jia R, Guo C, Xing Z, Liu Y, Li T, He Y. Transcriptome-Based Dissection of Intracranial Aneurysms Unveils an “Immuno-Thermal” Microenvironment and Defines a Pathological Feature-Derived Gene Signature for Risk Estimation. Front Immunol 2022; 13:878195. [PMID: 35711443 PMCID: PMC9194475 DOI: 10.3389/fimmu.2022.878195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Immune inflammation plays an essential role in the formation and rupture of intracranial aneurysm (IA). However, the current limited knowledge of alterations in the immune microenvironment of IA has hampered the mastery of pathological mechanisms and technological advances, such as molecular diagnostic and coated stent-based molecular therapy. In this study, seven IA datasets were enrolled from the GEO database to decode the immune microenvironment and relevant biometric alterations. The ssGSEA algorithm was employed for immune infiltration assessment. IAs displayed abundant immune cell infiltration, activated immune-related pathways, and high expression of immune-related genes. Several immunosuppression cells and genes were also coordinately upregulated in IAs. Five immune-related hub genes, including CXCL10, IL6, IL10, STAT1, and VEGFA, were identified from the protein-protein interaction network and further detected at the protein level. CeRNA networks and latent drugs targeting the hub genes were predicted for targeted therapy reference. Two gene modules recognized via WCGNA were functionally associated with contractile smooth muscle loss and extracellular matrix metabolism, respectively. In blood datasets, a pathological feature-derived gene signature (PFDGS) for IA diagnosis and rupture risk prediction was established using machine learning. Patients with high PFDGS scores may possess adverse biological alterations and present with a high risk of morbidity or IA rupture, requiring more vigilance or prompt intervention. Overall, we systematically unveiled an “immuno-thermal” microenvironment characterized by co-enhanced immune activation and immunosuppression in IA, which provides a novel insight into molecular pathology. The PFDGS is a promising signature for optimizing risk surveillance and clinical decision-making in IA patients.
Collapse
Affiliation(s)
- Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dehua Guo
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Chi Ma
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Lin Duan
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
- Department of Cerebrovascular Disease, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yanyan He
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
- Department of Cerebrovascular Disease, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Rufeng Jia
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
- Department of Cerebrovascular Disease, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Yingkun He, ; Tianxiao Li,
| | - Yingkun He
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
- Department of Cerebrovascular Disease, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Yingkun He, ; Tianxiao Li,
| |
Collapse
|
12
|
Fréneau M, Baron-Menguy C, Vion AC, Loirand G. Why Are Women Predisposed to Intracranial Aneurysm? Front Cardiovasc Med 2022; 9:815668. [PMID: 35224050 PMCID: PMC8866977 DOI: 10.3389/fcvm.2022.815668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Intracranial aneurysm (IA) is a frequent and generally asymptomatic cerebrovascular abnormality characterized as a localized dilation and wall thinning of intracranial arteries that preferentially arises at the arterial bifurcations of the circle of Willis. The devastating complication of IA is its rupture, which results in subarachnoid hemorrhage that can lead to severe disability and death. IA affects about 3% of the general population with an average age for detection of rupture around 50 years. IAs, whether ruptured or unruptured, are more common in women than in men by about 60% overall, and more especially after the menopause where the risk is double-compared to men. Although these data support a protective role of estrogen, differences in the location and number of IAs observed in women and men under the age of 50 suggest that other underlying mechanisms participate to the greater IA prevalence in women. The aim of this review is to provide a comprehensive overview of the current data from both clinical and basic research and a synthesis of the proposed mechanisms that may explain why women are more prone to develop IA.
Collapse
|
13
|
Fuentes AM, Stone McGuire L, Amin-Hanjani S. Sex Differences in Cerebral Aneurysms and Subarachnoid Hemorrhage. Stroke 2022; 53:624-633. [PMID: 34983239 DOI: 10.1161/strokeaha.121.037147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sex differences in cerebral aneurysm occurrence and characteristics have been well described. Although sex differences in outcomes following ischemic stroke have been identified, the effect of sex on outcomes following hemorrhagic stroke, and in particular, aneurysm treatment has been less studied. We describe the current state of knowledge regarding the impact of sex on treatment and outcomes of cerebral aneurysms. Although prior studies suggest that aneurysm prevalence and progression may be related to sex, we did not find clear evidence that outcomes following subarachnoid hemorrhage vary based on sex. Last, we identify areas for future research that could enhance understanding of the role sex plays in this context.
Collapse
|
14
|
Laurent D, Small C, Lucke-Wold B, Dodd WS, Chalouhi N, Hu YC, Hosaka K, Motwani K, Martinez M, Polifka A, Koch M, Busl KM, Maciel CB, Hoh B. Understanding the genetics of intracranial aneurysms: A primer. Clin Neurol Neurosurg 2022; 212:107060. [PMID: 34863053 PMCID: PMC10116189 DOI: 10.1016/j.clineuro.2021.107060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 02/08/2023]
Abstract
The genetics of intracranial aneurysms is complex. Much work has been done looking at the extracellular matrix surrounding cerebral vasculature as well as the role of matrix metalloproteinases. This comprehensive review summarizes what is known to date about the important genetic components that predispose to aneurysm formation and critically discusses the published findings. We discuss promising pre-clinical models of aneurysm formation and subarachnoid hemorrhage, and highlight avenues for future discovery, while considering limitations in the research to date. This review will further serve as a comprehensive reference guide to understand the genetic underpinnings for aneurysm pathophysiology and act as a primer for further investigation.
Collapse
Affiliation(s)
- Dimitri Laurent
- Department of Neurosurgery, University of Florida, Gainesville, United States.
| | - Coulter Small
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - William S Dodd
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Nohra Chalouhi
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Yin C Hu
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Melanie Martinez
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Adam Polifka
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Matthew Koch
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Katharina M Busl
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Carolina B Maciel
- Department of Neurosurgery, University of Florida, Gainesville, United States
| | - Brian Hoh
- Department of Neurosurgery, University of Florida, Gainesville, United States.
| |
Collapse
|
15
|
Patel D, Dodd WS, Motwani K, Hosaka K, Hoh BL. A Modification to a Murine Model for Intracranial Aneurysm Formation and Rupture. Cureus 2021; 13:e16250. [PMID: 34373811 PMCID: PMC8346265 DOI: 10.7759/cureus.16250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Between 3.6% and 6.0% of the population has an intracranial aneurysm. The mechanisms underlying intracranial aneurysm formation and rupture are not fully known. Several rodent models have been developed to better understand intracranial aneurysm pathophysiology. Hypertension, hemodynamic changes, and vessel injury are all necessary for aneurysm induction; however, multiple invasive procedures may disrupt an animal’s physiology. Therefore, we hypothesized that our method for inducing hypertension could be modified to create a simpler model. We previously developed a highly reproducible murine model of intracranial aneurysm formation and rupture that involves hemodynamic changes through ligation of the left common carotid artery, vessel wall degradation using elastase and a lysyl oxidase inhibitor, and hypertension through a high-salt diet, continuous angiotensin II infusion, and right renal artery ligation. In order to create a simpler model, we sought to eliminate renal artery ligation. We assessed aneurysm formation, aneurysm rupture, and blood pressure in two separate cohorts of C57BL/6 mice: one cohort underwent our model as above, while another cohort did not receive right renal artery ligation. Our results demonstrate that intracranial aneurysm formation and rupture rates did not differ between each group. Further, the blood pressures between cohorts did not differ at various timepoints in the model. Both cohorts, however, did have a significant increase in blood pressure from baseline, suggesting that renal artery ligation is not needed for inducing hypertension. These findings demonstrate that our murine model can be modified to eliminate right renal artery ligation. Thus, we propose this modification to our murine model for studying intracranial aneurysm pathophysiology.
Collapse
Affiliation(s)
- Devan Patel
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - William S Dodd
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, USA
| |
Collapse
|
16
|
Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. Int J Mol Sci 2021; 22:ijms22084133. [PMID: 33923626 PMCID: PMC8073154 DOI: 10.3390/ijms22084133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin 6 (IL-6) is a prominent proinflammatory cytokine. Neuroinflammation in general, and IL-6 signaling in particular, appear to play a major role in the pathobiology and pathophysiology of aneurysm formation and aneurysmal subarachnoid hemorrhage (SAH). Most importantly, elevated IL-6 CSF (rather than serum) levels appear to correlate with delayed cerebral ischemia (DCI, “vasospasm”) and secondary (“vasospastic”) infarctions. IL-6 CSF levels may also reflect other forms of injury to the brain following SAH, i.e., early brain damage and septic complications of SAH and aneurysm treatment. This would explain why many researchers have found an association between IL-6 levels and patient outcomes. These findings clearly suggest CSF IL-6 as a candidate biomarker in SAH patients. However, at this point, discrepant findings in variable study settings, as well as timing and other issues, e.g., defining proper clinical endpoints (i.e., secondary clinical deterioration vs. angiographic vasospasm vs. secondary vasospastic infarct) do not allow for its routine use. It is also tempting to speculate about potential therapeutic measures targeting elevated IL-6 CSF levels and neuroinflammation in SAH patients. Corticosteroids and anti-platelet drugs are indeed used in many SAH cases (not necessarily with the intention to interfere with detrimental inflammatory signaling), however, no convincing benefit has been demonstrated yet. The lack of a robust clinical perspective against the background of a relatively large body of data linking IL-6 and neuroinflammation with the pathophysiology of SAH is somewhat disappointing. One underlying reason might be that most relevant studies only report correlative data. The specific molecular pathways behind elevated IL-6 levels in SAH patients and their various interactions still remain to be delineated. We are optimistic that future research in this field will result in a better understanding of the role of neuroinflammation in the pathophysiology of SAH, which in turn, will translate into the identification of suitable biomarkers and even potential therapeutic targets.
Collapse
|
17
|
Oka M, Shimo S, Ohno N, Imai H, Abekura Y, Koseki H, Miyata H, Shimizu K, Kushamae M, Ono I, Nozaki K, Kawashima A, Kawamata T, Aoki T. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Sci Rep 2020; 10:8330. [PMID: 32433495 PMCID: PMC7239886 DOI: 10.1038/s41598-020-65361-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major type of cells constituting arterial walls and play a role to maintain stiffness via producing extracellular matrix. Here, the loss and degenerative changes of SMCs become the major histopathological features of an intracranial aneurysm (IA), a major cause of subarachnoid hemorrhage. Considering the important role of SMCs and the loss of this type of cells in IA lesions, we in the present study subjected rats to IA models and examined how SMCs behave during disease progression. We found that, at the neck portion of IAs, SMCs accumulated underneath the internal elastic lamina according to disease progression and formed the intimal hyperplasia. As these SMCs were positive for a dedifferentiation marker, myosin heavy chain 10, and contained abundant mitochondria and rough endoplasmic reticulum, SMCs at the intimal hyperplasia were dedifferentiated and activated. Furthermore, dedifferentiated SMCs expressed some pro-inflammatory factors, suggesting the role in the formation of inflammatory microenvironment to promote the disease. Intriguingly, some SMCs at the intimal hyperplasia were positive for CD68 and contained lipid depositions, indicating similarity with atherosclerosis. We next examined a potential factor mediating dedifferentiation and recruitment of SMCs. Platelet derived growth factor (PDGF)-BB was expressed in endothelial cells at the neck portion of lesions where high wall shear stress (WSS) was loaded. PDGF-BB facilitated migration of SMCs across matrigel-coated pores in a transwell system, promoted dedifferentiation of SMCs and induced expression of pro-inflammatory genes in these cells in vitro. Because, in a stenosis model of rats, PDGF-BB expression was expressed in endothelial cells loaded in high WSS regions, and SMCs present nearby were dedifferentiated, hence a correlation existed between high WSS, PDGFB and dedifferentiation in vivo. In conclusion, dedifferentiated SMCs presumably by PDGF-BB produced from high WSS-loaded endothelial cells accumulate in the intimal hyperplasia to form inflammatory microenvironment leading to the progression of the disease.
Collapse
Affiliation(s)
- Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, 7181 Kodachi, Minamitsurugun Fujikawaguchikomachi, Yamanashi, 401-0380, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, 38 Saigonaka, Meidaiji-cho, Okazaki City, Aichi, 444-8787, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, 36-1 Yoshidahomachi Saikyo-ku, Kyoto City, Kyoto, 606-8317, Japan
| | - Yu Abekura
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirokazu Koseki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Haruka Miyata
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Isao Ono
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Oowadashinden, Yachiyo City, Chiba, 276-8524, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan. .,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.
| |
Collapse
|