1
|
Zhang SY, Li CL, Yin J, Jiang M, Yang XF. Blood pressure variability and prognostic significance in traumatic brain injury: analysis of the eICU-CRD database. BMC Emerg Med 2024; 24:141. [PMID: 39112931 PMCID: PMC11305040 DOI: 10.1186/s12873-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Preliminary evidence demonstrates that visit-to-visit systolic blood pressure (SBP) variability is a prognostic factor of TBI. However, literature regarding the impact of initial blood pressure management on the outcomes of TBI patients is limited. We aimed to further validate the clinical significance of BPV on the prognostic outcomes of patients with TBI. METHODS We performed the analysis by using individual patient-level data acquired from the eICU-CRD, which collected 200,859 ICU admissions of 139,367 patients in 2014 and 2015 from 208 US hospitals. Adult patients with traumatic intraparenchymal hemorrhage or contusion were included. The primary outcome was in-hospital mortality and the secondary outcome was discharge-home rate. Blood pressure variability (BPV) was calculated according to standard criteria: at least six measurements were taken in the first 24 h (hyperacute group) and 36 over days 2-7 (acute group). We estimated the associations between BPV and outcomes with logistic and proportional odds regression models. The key parameter for BPV was standard deviation (SD) of SBP, categorized into quintiles. We also calculated the average real variability (ARV), as well as maximum, minimum, and mean SBP for comparison in our analysis. RESULTS We studied 1486 patients in the hyperacute group and 857 in the acute group. SD of SBP had a significant association with the in-hospital mortality for both the hyperacute group (highest quintile adjusted OR 2.28 95% CI 1.18-4.42; ptrend<0.001) and the acute group (highest quintile adjusted OR 2.17, 95% CI 1.08-4.36; ptrend<0.001). The strongest predictors of primary outcome were SD of SBP in the hyperacute phase and minimum SBP in the acute phase. Associations were similar for the discharge-home rate (for the hyperacute group, highest quintile adjusted OR 0.58, 95% CI 0.37-0.89; ptrend<0.001; for the acute group OR 0.55, 95% CI 0.32-0.95; ptrend<0.001). CONCLUSION Systolic BPV seems to predict a poor outcome in patients with TBI. The benefits of early treatment to maintain appropriate SBP level might be enhanced by smooth and sustained control.
Collapse
Affiliation(s)
- Shao-Yang Zhang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Chang-Li Li
- Department of FSTC Clinic, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jian Yin
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Meng Jiang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, China.
| | - Xiao-Feng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, #79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| |
Collapse
|
2
|
Svedung Wettervik T, Hånell A, Howells T, Engström ER, Lewén A, Enblad P. Autoregulatory Cerebral Perfusion Pressure Insults in Traumatic Brain Injury and Aneurysmal Subarachnoid Hemorrhage: The Role of Insult Intensity and Duration on Clinical Outcome. J Neurosurg Anesthesiol 2024; 36:228-236. [PMID: 37212723 DOI: 10.1097/ana.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This single-center, retrospective study investigated the outcome effect of the combined intensity and duration of differences between actual cerebral perfusion pressure (CPP) and optimal cerebral perfusion pressure (CPPopt), and also for absolute CPP, in patients with traumatic brain injury (TBI) and aneurysmal subarachnoid hemorrhage (aSAH). METHODS A total of 378 TBI and 432 aSAH patients treated in a neurointensive care unit between 2008 and 2018 with at least 24 hours of CPPopt data during the first 10 days following injury, and with 6-month (TBI) or 12-month (aSAH) extended Glasgow Outcome Scale (GOS-E) scores, were included in the study. ∆CPPopt-insults (∆CPPopt=actual CPP-CPPopt) and CPP-insults were visualized as 2-dimensional plots to highlight the combined effect of insult intensity (mm Hg) and duration (min) on patient outcome. RESULTS In TBI patients, a zone of ∆CPPopt ± 10 mm Hg was associated with more favorable outcome, with transitions towards unfavorable outcome above and below this zone. CPP in the range of 60 to 80 mm Hg was associated with higher GOS-E, whereas CPP outside this range was associated with lower GOS-E. In aSAH patients, there was no clear transition from higher to lower GOS-E for ∆CPPopt-insults; however, there was a transition from favorable to unfavorable outcome when CPP was <80 mm Hg. CONCLUSIONS TBI patients with CPP close to CPPopt exhibited better clinical outcomes, and absolute CPP within the 60 to 80 mm Hg range was also associated with favorable outcome. In aSAH patients, there was no clear transition for ∆CPPopt-insults in relation to outcome, whereas generally high absolute CPP values were associated overall with favorable recovery.
Collapse
|
3
|
Chen Y, Ma Y, Qin J, Wei X, Yang Y, Yuan Y, Yan F, Huo X, Han L. Blood pressure variability predicts poor outcomes in acute stroke patients without thrombolysis: a systematic review and meta-analysis. J Neurol 2024; 271:1160-1169. [PMID: 38036920 DOI: 10.1007/s00415-023-12054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Stroke is a significant medical condition, and blood pressure stands out as the most prevalent treatable risk factor associated with it. Researches link blood pressure variability (BPV) with stroke; however, the specific relationship between with the outcomes of stroke patients remains unclear. As blood pressure variability and mean blood pressure are interrelated, it remains uncertain whether BPV adds additional information to understanding the outcome of acute stroke patients. OBJECTIVE To systematically review studies investigating the association between blood pressure variability and prognosis in acute stroke patients. METHODS Embase, PubMed, Web of Science, and the Cochrane Library were searched for English language full-text articles from the inception to 1 January 2023. Stroke patients aged ≥ 18 years were included in this analysis. Stroke types were not restricted. RESULTS This meta-analysis shows that higher systolic blood pressure variability is linked to a higher risk of poor outcome, including function disability, mortality, early neurological deterioration, and stroke recurrence, among acute stroke patients without thrombolysis. A higher diastolic blood pressure variability is linked with to a higher risk of mortality and functional disability. CONCLUSIONS This review reveals that blood pressure variability is a novel and clinically relevant risk factor for stroke patients' outcome. Future studies should investigate how best to measure and define BPV in acute stroke. Larger studies are warranted to provide more robust evidence in this area.
Collapse
Affiliation(s)
- Yajing Chen
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yuxia Ma
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730030, Gansu Province, China.
| | - Jiangxia Qin
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoqin Wei
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yiyi Yang
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yue Yuan
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Fanghong Yan
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoning Huo
- The Third People's Hospital of Lanzhou, No.130 Jianlan New Village, Lanzhou, Gansu Province, China
| | - Lin Han
- Evidence-Based Nursing Centre, School of Nursing, Lanzhou University, Lanzhou, Gansu Province, China.
- Department of Nursing, Gansu Provincial Hospital, No. 204 Donggang West Road, Lanzhou, Gansu Province, China.
| |
Collapse
|
4
|
Viderman D, Bilotta F, Badenes R, Abdildin Y. Anesthetic management of endovascular neurosurgical procedures in acute ischemic stroke patients: A systematic review of meta-analyses. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2023; 70:580-592. [PMID: 37678462 DOI: 10.1016/j.redare.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/06/2023] [Indexed: 09/09/2023]
Abstract
Restoration of cerebral circulation in the ischemic area is the most critical treatment task for reducing irreversible neuronal injury in ischemic stroke patients. The recanalización of appropriately selected patients became indispensable for improving clinical outcomes and resulted in the widespread revascularization techniques. There is no clear answer as to which anesthetic modality to use in ischemic stroke patients undergoing neuro-endovascular procedures. The purpose of this systematic review is to conduct a qualitative analysis of systematic reviews and meta-analyses (RSs & MAs) comparing general anesthesia and non-general anesthesia methods for cerebral endovascular interventions in acute ischemic stroke patients. We developed a protocol with the inclusion and exclusion criteria for matched publications and conducted a literature search in PubMed and Google Scholar. The literature search yielded 52 potential publications. Ten relevant RSs & MAs were included and analysed in this review. The decision about which anesthesia method to use for endovascular procedures in managing acute ischemic stroke patients should be made based on the patient's personal characteristics, pathophysiological phenotypes, clinical characteristics, and institutional experience.
Collapse
Affiliation(s)
- D Viderman
- Department of Surgery (Section of Anesthesiology, Intensive Care, and Pain Medicine), Nazarbayev University School of Medicine (NUSOM), Astana, Kazakhstan.
| | - F Bilotta
- Departamento de Anestesia y Cuidado Intensivo, Universidad de Roma La Sapienza, Roma, Italy
| | - R Badenes
- Departamento de Anestesiología y Cuidado Intensivo, Hospital Clínico Universitario de Valencia, Universidad de Valencia, Valencia, Spain
| | - Y Abdildin
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
5
|
Svedung Wettervik T, Beqiri E, Bögli SY, Placek M, Guilfoyle MR, Helmy A, Lavinio A, O'Leary R, Hutchinson PJ, Smielewski P. Brain tissue oxygen monitoring in traumatic brain injury: part I-To what extent does PbtO 2 reflect global cerebral physiology? Crit Care 2023; 27:339. [PMID: 37653526 PMCID: PMC10472704 DOI: 10.1186/s13054-023-04627-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The primary aim was to explore the association of global cerebral physiological variables including intracranial pressure (ICP), cerebrovascular reactivity (PRx), cerebral perfusion pressure (CPP), and deviation from the PRx-based optimal CPP value (∆CPPopt; actual CPP-CPPopt) in relation to brain tissue oxygenation (pbtO2) in traumatic brain injury (TBI). METHODS A total of 425 TBI patients with ICP- and pbtO2 monitoring for at least 12 h, who had been treated at the neurocritical care unit, Addenbrooke's Hospital, Cambridge, UK, between 2002 and 2022 were included. Generalized additive models (GAMs) and linear mixed effect models were used to explore the association of ICP, PRx, CPP, and CPPopt in relation to pbtO2. PbtO2 < 20 mmHg, ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, and ∆CPPopt < - 5 mmHg were considered as cerebral insults. RESULTS PbtO2 < 20 mmHg occurred in median during 17% of the monitoring time and in less than 5% in combination with ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, or ∆CPPopt < - 5 mmHg. In GAM analyses, pbtO2 remained around 25 mmHg over a large range of ICP ([0;50] mmHg) and PRx [- 1;1], but deteriorated below 20 mmHg for extremely low CPP below 30 mmHg and ∆CPPopt below - 30 mmHg. In linear mixed effect models, ICP, CPP, PRx, and ∆CPPopt were significantly associated with pbtO2, but the fixed effects could only explain a very small extent of the pbtO2 variation. CONCLUSIONS PbtO2 below 20 mmHg was relatively frequent and often occurred in the absence of disturbances in ICP, PRx, CPP, and ∆CPPopt. There were significant, but weak associations between the global cerebral physiological variables and pbtO2, suggesting that hypoxic pbtO2 is often a complex and independent pathophysiological event. Thus, other variables may be more crucial to explain pbtO2 and, likewise, pbtO2 may not be a suitable outcome measure to determine whether global cerebral blood flow optimization such as CPPopt therapy is successful.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefan Yu Bögli
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michal Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Andrea Lavinio
- Neurosciences and Trauma Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Ronan O'Leary
- Neurosciences and Trauma Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Intracranial Pressure Variability: A New Potential Metric of Cerebral Ischemia and Energy Metabolic Dysfunction in Aneurysmal Subarachnoid Hemorrhage? J Neurosurg Anesthesiol 2023; 35:208-214. [PMID: 36877175 DOI: 10.1097/ana.0000000000000816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND It was recently reported that lower intracranial pressure variability (ICPV) is associated with delayed ischemic neurological deficits and unfavorable outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH). In this study, we aimed to determine whether lower ICPV also correlated with worse cerebral energy metabolism after aSAH. METHODS A total of 75 aSAH patients treated in the neurointensive care unit at Uppsala University Hospital, Sweden between 2008 and 2018 and with both intracranial pressure and cerebral microdialysis (MD) monitoring during the first 10 days after ictus were included in this retrospective study. ICPV was calculated with a bandpass filter limited to intracranial pressure slow waves with a wavelength of 55 to 15 seconds. Cerebral energy metabolites were measured hourly with MD. The monitoring period was divided into 3 phases; early (days 1 to 3), early vasospasm (days 4 to 6.5), and late vasospasm (days 6.5 to 10). RESULTS Lower ICPV was associated with lower MD-glucose in the late vasospasm phase, lower MD-pyruvate in the early vasospasm phases, and higher MD-lactate-pyruvate ratio (LPR) in the early and late vasospasm phases. Lower ICPV was associated with poor cerebral substrate supply (LPR >25 and pyruvate <120 µM) rather than mitochondrial failure (LPR >25 and pyruvate >120 µM). There was no association between ICPV and delayed ischemic neurological deficit, but lower ICPV in both vasospasm phases correlated with unfavorable outcomes. CONCLUSION Lower ICPV was associated with an increased risk for disturbed cerebral energy metabolism and worse clinical outcomes in aSAH patients, possibly explained by a vasospasm-related decrease in cerebral blood volume dynamics and cerebral ischemia.
Collapse
|
7
|
Svedung Wettervik T, Lewén A, Enblad P. Fine tuning of neurointensive care in aneurysmal subarachnoid hemorrhage: From one-size-fits-all towards individualized care. World Neurosurg X 2023; 18:100160. [PMID: 36818739 PMCID: PMC9932216 DOI: 10.1016/j.wnsx.2023.100160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe type of acute brain injury with high mortality and burden of neurological sequelae. General management aims at early aneurysm occlusion to prevent re-bleeding, cerebrospinal fluid drainage in case of increased intracranial pressure and/or acute hydrocephalus, and cerebral blood flow augmentation in case of delayed ischemic neurological deficits. In addition, the brain is vulnerable to physiological insults in the acute phase and neurointensive care (NIC) is important to optimize the cerebral physiology to avoid secondary brain injury. NIC has led to significantly better neurological recovery following aSAH, but there is still great room for further improvements. First, current aSAH NIC management protocols are to some extent extrapolated from those in traumatic brain injury, notwithstanding important disease-specific differences. Second, the same NIC management protocols are applied to all aSAH patients, despite great patient heterogeneity. Third, the main variables of interest, intracranial pressure and cerebral perfusion pressure, may be too superficial to fully detect and treat several important pathomechanisms. Fourth, there is a lack of understanding not only regarding physiological, but also cellular and molecular pathomechanisms and there is a need to better monitor and treat these processes. This narrative review aims to discuss current state-of-the-art NIC of aSAH, knowledge gaps in the field, and future directions towards a more individualized care in the future.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
8
|
Svedung Wettervik T, Engquist H, Howells T, Hånell A, Rostami E, Ronne-Engström E, Lewén A, Enblad P. Higher intracranial pressure variability is associated with lower cerebrovascular resistance in aneurysmal subarachnoid hemorrhage. J Clin Monit Comput 2023; 37:319-326. [PMID: 35842879 PMCID: PMC9852113 DOI: 10.1007/s10877-022-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 01/24/2023]
Abstract
Higher intracranial pressure variability (ICPV) has been associated with a more favorable cerebral energy metabolism, lower rate of delayed ischemic neurologic deficits, and more favorable outcome in aneurysmal subarachnoid hemorrhage (aSAH). We have hypothesized that higher ICPV partly reflects more compliant and active cerebral vessels. In this study, the aim was to further test this by investigating if higher ICPV was associated with lower cerebrovascular resistance (CVR) and higher cerebral blood flow (CBF) after aSAH. In this observational study, 147 aSAH patients were included, all of whom had been treated in the Neurointensive Care (NIC) Unit, Uppsala, Sweden, 2012-2020. They were required to have had ICP monitoring and at least one xenon-enhanced computed tomography (Xe-CT) scan to study cortical CBF within the first 2 weeks post-ictus. CVR was defined as the cerebral perfusion pressure in association with the Xe-CT scan divided by the concurrent CBF. ICPV was defined over three intervals: subminute (ICPV-1m), 30-min (ICPV-30m), and 4 h (ICPV-4h). The first 14 days were divided into early (days 1-3) and vasospasm phase (days 4-14). In the vasospasm phase, but not in the early phase, higher ICPV-4h (β = - 0.19, p < 0.05) was independently associated with a lower CVR in a multiple linear regression analysis and with a higher global cortical CBF (r = 0.19, p < 0.05) in a univariate analysis. ICPV-1m and ICPV-30m were not associated with CVR or CBF in any phase. This study corroborates the hypothesis that higher ICPV, at least in the 4-h interval, is favorable and may reflect more compliant and possibly more active cerebral vessels.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, Uppsala University, 751 85, Uppsala, Sweden
| | - Timothy Howells
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Hånell
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Elham Rostami
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Elisabeth Ronne-Engström
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Lewén
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
9
|
Abergel H, Bidder M, Ashkenazi I, Reytman L, Alfici R, Krausz MM. Fresh Frozen Plasma Increases Hemorrhage in Blunt Traumatic Brain Injury and Uncontrolled Hemorrhagic Shock. Rambam Maimonides Med J 2023; 14:RMMJ.10489. [PMID: 36719667 PMCID: PMC9888485 DOI: 10.5041/rmmj.10489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Blunt traumatic brain injury (bTBI) and uncontrolled hemorrhagic shock (UCHS) are common causes of mortality in polytrauma. We studied the influence of fresh frozen plasma (FFP) resuscitation in a rat model with both bTBI and UCHS before achieving hemorrhage control. METHODS The bTBI was induced by an external weight drop (200 g) onto the bare skull of anesthetized male Lewis (Lew/SdNHsd) rats; UCHS was induced by resection of two-thirds of the rats' tails. Fifteen minutes following trauma, bTBI+UCHS rats underwent resuscitation with FFP or lactated Ringer's solution (LR). Eight groups were evaluated: (1) Sham; (2) bTBI; (3) UCHS; (4) UCHS+FFP; (5) UCHS+LR; (6) bTBI+UCHS; (7) bTBI+UCHS+FFP; and (8) bTBI+UCHS+LR. Bleeding volume, hematocrit, lactate, mean arterial pressure (MAP), heart rate, and mortality were measured. RESULTS The study included 97 rats that survived the immediate trauma. Mean blood loss up to the start of resuscitation was similar among UCHS only and bTBI+UCHS rats (P=0.361). Following resuscitation, bleeding was more extensive in bTBI+UCHS+FFP rats (5.2 mL, 95% confidence interval [CI] 3.7, 6.6) than in bTBI+UCHS+LR rats (2.5 mL, 95% CI 1.2, 3.8) and bTBI+UCHS rats (1.9 mL, 95% CI 0, 3.9) (P=0.005). Overall mortality increased if bleeding was above 4.5 mL (92.3% versus 8%; P<0.001). Mortality was 83.3% (10/12) in bTBI+UCHS+FFP rats, 41.7% (5/12) in bTBI+UCHS+LR rats, and 64.3% (9/14) in bTBI+UCHS rats. CONCLUSION The bTBI did not exacerbate bleeding in rats undergoing UCHS. Compared to LR, FFP resuscitation was associated with a significantly increased blood loss in bTBI+UCHS rats.
Collapse
Affiliation(s)
- Hilla Abergel
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
| | - Miri Bidder
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
| | - Itamar Ashkenazi
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
| | - Leonid Reytman
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
- Department of Anesthesiology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ricardo Alfici
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
- Clinical Professor Emeritus, Department of General Surgery, Hillel Yaffe Medical Center, Hadera, Israel
| | - Michael M. Krausz
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
- Professor Emeritus, Department of General Surgery, Hillel Yaffe Medical Center, Hadera, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Wang R, Zeng X, Long Y, Zhang J, Bo H, He M, Xu J. Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms. Brain Sci 2023; 13:brainsci13010094. [PMID: 36672075 PMCID: PMC9857144 DOI: 10.3390/brainsci13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Background: The number of geriatric traumatic brain injury (TBI) patients is increasing every year due to the population’s aging in most of the developed countries. Unfortunately, there is no widely recognized tool for specifically evaluating the prognosis of geriatric TBI patients. We designed this study to compare the prognostic value of different machine learning algorithm-based predictive models for geriatric TBI. Methods: TBI patients aged ≥65 from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were eligible for this study. To develop and validate machine learning algorithm-based prognostic models, included patients were divided into a training set and a testing set, with a ratio of 7:3. The predictive value of different machine learning based models was evaluated by calculating the area under the receiver operating characteristic curve, sensitivity, specificity, accuracy and F score. Results: A total of 1123 geriatric TBI patients were included, with a mortality of 24.8%. Non-survivors had higher age (82.2 vs. 80.7, p = 0.010) and lower Glasgow Coma Scale (14 vs. 7, p < 0.001) than survivors. The rate of mechanical ventilation was significantly higher (67.6% vs. 25.9%, p < 0.001) in non-survivors while the rate of neurosurgical operation did not differ between survivors and non-survivors (24.3% vs. 23.0%, p = 0.735). Among different machine learning algorithms, Adaboost (AUC: 0.799) and Random Forest (AUC: 0.795) performed slightly better than the logistic regression (AUC: 0.792) on predicting mortality in geriatric TBI patients in the testing set. Conclusion: Adaboost, Random Forest and logistic regression all performed well in predicting mortality of geriatric TBI patients. Prognostication tools utilizing these algorithms are helpful for physicians to evaluate the risk of poor outcomes in geriatric TBI patients and adopt personalized therapeutic options for them.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xihang Zeng
- Department of Neurosurgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yujuan Long
- Department of Critical Care Medicine, Chengdu Seventh People’s Hospital, 610021 Chengdu, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Hong Bo
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, 610041 Chengdu, China
- Correspondence: (M.H.); (J.X.)
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 610041 Chengdu, China
- Correspondence: (M.H.); (J.X.)
| |
Collapse
|
11
|
Chen XY, Wang MH, Xiao X, Dong YH, Tan B, Dong HR, Zhou LN, Zhao JL, Xie R. Blood Pressure Variability Associates with Six-Month Outcomes in Acute Cervical Spinal Cord Injury: An Analysis of 105 Patients. World Neurosurg 2022; 168:e480-e489. [DOI: 10.1016/j.wneu.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
12
|
Mortality and Risk Factors in Isolated Traumatic Brain Injury Patients: A Prospective Cohort Study. J Surg Res 2022; 279:480-490. [PMID: 35842973 DOI: 10.1016/j.jss.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/17/2022] [Accepted: 05/21/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Outcomes in patients with isolated traumatic brain injury (iTBI) have not been evaluated comprehensively in low-income and middle-income countries. We aimed to study the in-hospital iTBI mortality and its associated risk factors in a prospective multicenter Indian trauma registry. METHODS Patients with iTBI (head and neck Abbreviated Injury Score ≥2 and other region Abbreviated Injury Score ≤2) were included. Study variables comprised age, gender, mechanism of injury, systolic blood pressure (SBP) at arrival, Glasgow Coma Scale (GCS) score - classified as mild (13-15), moderate (9-12), and severe (3-8), transfer status, and time to presentation at any participating hospital. A multivariable logistic regression was performed to assess the impact of these factors on 24-h and 30-d mortality following iTBI. RESULTS Among 5042 included patients, 24-h and 30-d in-hospital mortalities were 5.9% and 22.4%. On a regression analysis, 30-d mortality was associated with age ≥45 y (odds ratio [OR] = 2.1 [1.6-2.7]), railway injury mechanisms (OR = 2.1 [1.3-3.5]), SBP <90 mmHg (OR = 2.6 [1.6-4.1]), and moderate (OR = 3.8 [3.0-5.0]) to severe (OR = 21.1 [16.8-26.7]) iTBI based on GCS scores. 24-h mortality showed similar trends. Patients transferred to the participating hospitals from other centers had higher odds of 30-d mortality (OR = 1.4 [1.2-1.8]) compared to those arriving directly. Those who received neurosurgical intervention had lower odds of 24-h mortality (0.3 [0.2-0.4]). CONCLUSIONS Age ≥45 y, GCS score ≤12, and SBP <90 mmHg at arrival increased the risk of in-hospital mortality from iTBI.
Collapse
|
13
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
14
|
Svedung Wettervik T, Engquist H, Hånell A, Howells T, Rostami E, Ronne-Engström E, Lewén A, Enblad P. Cerebral Blood Flow and Oxygen Delivery in Aneurysmal Subarachnoid Hemorrhage: Relation to Neurointensive Care Targets. Neurocrit Care 2022; 37:281-292. [PMID: 35449343 PMCID: PMC9283361 DOI: 10.1007/s12028-022-01496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Background The primary aim was to determine to what extent continuously monitored neurointensive care unit (neuro-ICU) targets predict cerebral blood flow (CBF) and delivery of oxygen (CDO2) after aneurysmal subarachnoid hemorrhage. The secondary aim was to determine whether CBF and CDO2 were associated with clinical outcome. Methods In this observational study, patients with aneurysmal subarachnoid hemorrhage treated at the neuro-ICU in Uppsala, Sweden, from 2012 to 2020 with at least one xenon-enhanced computed tomography (Xe-CT) obtained within the first 14 days post ictus were included. CBF was measured with the Xe-CT and CDO2 was calculated based on CBF and arterial oxygen content. Regional cerebral hypoperfusion was defined as CBF < 20 mL/100 g/min, and poor CDO2 was defined as CDO2 < 3.8 mL O2/100 g/min. Neuro-ICU variables including intracranial pressure (ICP), pressure reactivity index, cerebral perfusion pressure (CPP), optimal CPP, and body temperature were assessed in association with the Xe-CT. The acute phase was divided into early phase (day 1–3) and vasospasm phase (day 4–14). Results Of 148 patients, 27 had underwent a Xe-CT only in the early phase, 74 only in the vasospasm phase, and 47 patients in both phases. The patients exhibited cerebral hypoperfusion and poor CDO2 for medians of 15% and 30%, respectively, of the cortical brain areas in each patient. In multiple regressions, higher body temperature was associated with higher CBF and CDO2 in the early phase. In a similar regression for the vasospasm phase, younger age and longer pulse transit time (lower peripheral resistance) correlated with higher CBF and CDO2, whereas lower hematocrit only correlated with higher CBF but not with CDO2. ICP, CPP, and pressure reactivity index exhibited no independent association with CBF and CDO2. R2 of these regressions were below 0.3. Lower CBF and CDO2 in the early phase correlated with poor outcome, but this only held true for CDO2 in multiple regressions. Conclusions Systemic and cerebral physiological variables exhibited a modest association with CBF and CDO2. Still, cerebral hypoperfusion and low CDO2 were common and low CDO2 was associated with poor outcome. Xe-CT imaging could be useful to help detect secondary brain injury not evident by high ICP and low CPP. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-022-01496-1.
Collapse
Affiliation(s)
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Anders Lewén
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Blood pressure undulation of peripheral thrombolysis period in acute ischemic stroke is associated with prognosis. J Hypertens 2022; 40:749-757. [PMID: 34980864 DOI: 10.1097/hjh.0000000000003070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Evidence suggests that patients with higher blood pressure variability (BPV) have a higher risk for stroke but the relationship between BPV and stroke outcomes is unknown in those who underwent intravenous thrombolysis (IVT) for acute ischemic stroke (AIS). The objective of this study is to investigate the association among BPV, BP values and stroke outcomes. METHODS A retrospective analysis of about 510 consecutive thrombolysis cases for AIS from January 2015 to March 2019 in a single-center database were done. Then, these patients were followed-up for 3 months. We used univariate and multivariable models to evaluate the relationship between mean BP values, BPV and the risk of stroke outcomes from prior IVT to 72 h after IVT. Meanwhile, we also used COX regression to assess the hazard ratios of stroke outcomes with BPV within 3 months. Furthermore, we tested the effect of BP level at various time-points (prior to IVT and at 0, 2, 4, 8, 12, 24, 48 and 72 h after IVT) on development of postthrombolytic stroke outcomes. RESULTS Higher BPV from prior IVT to 72 h after IVT was associated with higher risk of stroke outcomes within 3 months [SBPV of recurrent stroke: odds ratios (OR) = 5.298, 95% confidence interval (CI) 1.339-10.968, P = 0.018; DBPV of recurrent stroke: OR = 6.397, 95% CI 1.576-25.958, P = 0.009, respectively]. In addition, patients with recurrent stroke had significantly higher mean SBP (OR=1.037, 95% CI 1.006-1.069, P = 0.019). Furthermore, higher BP at different time points were associated with greater risk of recurrent stroke from prior IVT to 72 h after IVT. CONCLUSION Higher BPV and SBP from prior IVT to 72 h after IVT was associated with higher risk of stroke outcomes within 3 months.
Collapse
|
16
|
Svedung Wettervik T, Fahlström M, Enblad P, Lewén A. Cerebral Pressure Autoregulation in Brain Injury and Disorders-A Review on Monitoring, Management, and Future Directions. World Neurosurg 2021; 158:118-131. [PMID: 34775084 DOI: 10.1016/j.wneu.2021.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The role of cerebral pressure autoregulation (CPA) in brain injury and disorders has gained increased interest. The CPA is often disturbed as a consequence of acute brain injury, which contributes to further brain damage and worse outcome. Specifically, in severe traumatic brain injury, CPA disturbances predict worse clinical outcome and targeting an autoregulatory-oriented optimal cerebral perfusion pressure threshold may improve brain energy metabolism and clinical outcome. In aneurysmal subarachnoid hemorrhage, cerebral vasospasm in combination with distal autoregulatory disturbances precipitate delayed cerebral ischemia. The role of optimal cerebral perfusion pressure targets is less clear in aneurysmal subarachnoid hemorrhage, but high cerebral perfusion pressure targets are generally favorable in the vasospasm phase. In acute ischemia, autoregulatory disturbances may occur and autoregulatory-oriented blood pressure (optimal mean arterial pressure) management reduces the risk of hemorrhagic transformation, brain edema, and unfavorable outcome. In chronic occlusive disease such as moyamoya, the gradual reduction of the cerebral circulation leads to compensatory distal vasodilation and the residual CPA capacity predicts the risk for cerebral ischemia. In spontaneous intracerebral hemorrhage, the role of autoregulatory disturbances is less clear, but CPA disturbances correlate with worse clinical outcome. Also, in community-acquired bacterial meningitis, CPA dysfunction is frequent and correlates with worse clinical outcome, but autoregulatory management is yet to be evaluated. In this review, we discuss the role of CPA in different types of brain injury and disease, the strengths and limitations of the monitoring methods, the potentials of autoregulatory management, and future directions in the field.
Collapse
Affiliation(s)
| | - Markus Fahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Tas J, Beqiri E, van Kaam RC, Czosnyka M, Donnelly J, Haeren RH, van der Horst ICC, Hutchinson PJ, van Kuijk SMJ, Liberti AL, Menon DK, Hoedemaekers CWE, Depreitere B, Smielewski P, Meyfroidt G, Ercole A, Aries MJH. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial. J Neurotrauma 2021; 38:2790-2800. [PMID: 34407385 DOI: 10.1089/neu.2021.0197] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Managing traumatic brain injury (TBI) patients with a cerebral perfusion pressure (CPP) near to the cerebral autoregulation (CA)-guided "optimal" CPP (CPPopt) value is associated with improved outcome and might be useful to individualize care, but has never been prospectively evaluated. This study evaluated the feasibility and safety of CA-guided CPP management in TBI patients requiring intracranial pressure monitoring and therapy (TBIicp patients). The CPPopt Guided Therapy: Assessment of Target Effectiveness (COGiTATE) parallel two-arm feasibility trial took place in four tertiary centers. TBIicp patients were randomized to either the Brain Trauma Foundation (BTF) guideline CPP target range (control group) or to the individualized CA-guided CPP targets (intervention group). CPP targets were guided by six times daily software-based alerts for up to 5 days. The primary feasibility end-point was the percentage of time with CPP concordant (±5 mm Hg) with the set CPP targets. The main secondary safety end-point was an increase in therapeutic intensity level (TIL) between the control and intervention group. Twenty-eight patients were randomized to the control and 32 patients to the intervention group. CPP in the intervention group was in the target range for 46.5% (interquartile range, 41.2-58) of the monitored time, significantly higher than the feasibility target specified in the published protocol (36%; p < 0.001). There were no significant differences between groups for TIL or for other safety end-points. Conclusively, targeting an individual and dynamic CA-guided CPP is feasible and safe in TBIicp patients. This encourages a prospective trial powered for clinical outcomes.
Collapse
Affiliation(s)
- Jeanette Tas
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ruud C van Kaam
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Poland
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Roel H Haeren
- School for Mental Health and Neuroscience (MHeNS), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Neurosurgery, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Analisa L Liberti
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Anaesthesia and Intensive Care, San Carlo Borromeo Hospital, Milan, Italy
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | | | - Bart Depreitere
- Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Marcel J H Aries
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
18
|
Pay Attention to Blood Pressure and Oxygen Supply for Neurocritically Ill Patients: Each Pathology Deserves a Specific Treatment. Neurocrit Care 2021; 34:697-698. [PMID: 33751387 DOI: 10.1007/s12028-021-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
|
19
|
Svedung Wettervik T, Howells T, Hånell A, Ronne-Engström E, Lewén A, Enblad P. Low intracranial pressure variability is associated with delayed cerebral ischemia and unfavorable outcome in aneurysmal subarachnoid hemorrhage. J Clin Monit Comput 2021; 36:569-578. [PMID: 33728586 PMCID: PMC9123038 DOI: 10.1007/s10877-021-00688-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
Purpose High intracranial pressure variability (ICPV) is associated with favorable outcome in traumatic brain injury, by mechanisms likely involving better cerebral blood flow regulation. However, less is known about ICPV in aneurysmal subarachnoid hemorrhage (aSAH). In this study, we investigated the explanatory variables for ICPV in aSAH and its association with delayed cerebral ischemia (DCI) and clinical outcome. Methods
In this retrospective study, 242 aSAH patients, treated at the neurointensive care, Uppsala, Sweden, 2008–2018, with ICP monitoring the first ten days post-ictus were included. ICPV was evaluated on three time scales: (1) ICPV-1 m—ICP slow wave amplitude of wavelengths between 55 and 15 s, (2) ICPV-30 m—the deviation from the mean ICP averaged over 30 min, and (3) ICPV-4 h—the deviation from the mean ICP averaged over 4 h. The ICPV measures were analyzed in the early phase (day 1–3), in the early vasospasm phase (day 4–6.5), and the late vasospasm phase (day 6.5–10). Results High ICPV was associated with younger age, reduced intracranial pressure/volume reserve (high RAP), and high blood pressure variability in multiple linear regression analyses for all ICPV measures. DCI was associated with reduced ICPV in both vasospasm phases. High ICPV-1 m in the post-ictal early phase and the early vasospasm phase predicted favorable outcome in multiple logistic regressions, whereas ICPV-30 m and ICPV-4 h in the late vasospasm phase had a similar association. Conclusions Higher ICPV may reflect more optimal cerebral vessel activity, as reduced values are associated with an increased risk of DCI and unfavorable outcome after aSAH.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Hånell
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Elisabeth Ronne-Engström
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
20
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Arnaout MM, Martinez-Perez R, Moscote-Salazar LR, Garcia-Ballestas E, Agrawal A. Letter: Blood Pressure Variability and Optimal Cerebral Perfusion Pressure - New Therapeutic Targets in Traumatic Brain Injury. Neurosurgery 2020; 87:E83-E84. [PMID: 32294201 DOI: 10.1093/neuros/nyaa101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohamed M Arnaout
- Department of Neurosurgery Faculty of Medicine Zagazig University Sharkia, Egypt
| | - Rafael Martinez-Perez
- Department of Neurosurgery Wexner Medical Center The Ohio State university Columbus, Ohio.,Institute of Neurosciences Division of Neurosurgery Universidad Austral de Chile Valdivia, Chile
| | - Luis Rafael Moscote-Salazar
- Consejo Latinoamericano de Neurointensivismo - CLaNi Cartagena, Colombia.,Centro de Investigaciones Biomédicas Faculty of Medicine University of Cartagena Cartagena, Colombia
| | - Ezequiel Garcia-Ballestas
- Consejo Latinoamericano de Neurointensivismo - CLaNi Cartagena, Colombia.,Centro de Investigaciones Biomédicas Faculty of Medicine University of Cartagena Cartagena, Colombia
| | - Amit Agrawal
- All India Institute of Medical Sciences Saket Nagar, Bhopal Madhya Pradesh, India
| |
Collapse
|
22
|
Svedung Wettervik TM, Enblad P. In Reply: Blood Pressure Variability and Optimal Cerebral Perfusion Pressure-New Therapeutic Targets in Traumatic Brain Injury. Neurosurgery 2020; 87:E85. [PMID: 32294197 DOI: 10.1093/neuros/nyaa103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Per Enblad
- Department of Neuroscience Section of Neurosurgery Uppsala University Uppsala, Sweden
| |
Collapse
|