1
|
Suvarnapathaki S, Serrano-Farias A, Dudley JC, Bettegowda C, Rincon-Torroella J. Unlocking the Potential of Circulating miRNAs as Biomarkers in Glioblastoma. Life (Basel) 2024; 14:1312. [PMID: 39459612 PMCID: PMC11509808 DOI: 10.3390/life14101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Using microRNAs (miRNAs) as potential circulating biomarkers in diagnosing and treating glioblastoma (GBM) has garnered a lot of scientific and clinical impetus in the past decade. As an aggressive primary brain tumor, GBM poses challenges in early detection and effective treatment with significant current diagnostic constraints and limited therapeutic strategies. MiRNA dysregulation is present in GBM. The intricate involvement of miRNAs in altering cell proliferation, invasion, and immune escape makes them prospective candidates for identifying and monitoring GBM diagnosis and response to treatment. These miRNAs could play a dual role, acting as both potential diagnostic markers and targets for therapy. By modulating the activity of various oncogenic and tumor-suppressive proteins, miRNAs create opportunities for precision medicine and targeted therapies in GBM. This review centers on the critical role and function of circulating miRNA biomarkers in GBM diagnosis and treatment. It highlights their significance in providing insights into disease progression, aiding in early diagnosis, and potential use as targets for novel therapeutic interventions. Ultimately, the study of miRNA would contribute to improving patient outcomes in the challenging landscape of GBM management.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Antolin Serrano-Farias
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jonathan C. Dudley
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| |
Collapse
|
2
|
O’Halloran K, Yellapantula V, Christodoulou E, Ostrow D, Bootwalla M, Ji J, Cotter J, Chapman N, Chu J, Margol A, Krieger MD, Chiarelli PA, Gai X, Biegel JA. Low-pass whole-genome and targeted sequencing of cell-free DNA from cerebrospinal fluid in pediatric patients with central nervous system tumors. Neurooncol Adv 2023; 5:vdad077. [PMID: 37461402 PMCID: PMC10349915 DOI: 10.1093/noajnl/vdad077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Background Central nervous system tumors are the most common pediatric solid tumors and the most frequent cause of cancer-related morbidity in childhood. Significant advances in understanding the molecular features of these tumors have facilitated the development of liquid biopsy assays that may aid in diagnosis and monitoring response to therapy. In this report, we describe our comprehensive liquid biopsy platform for detection of genome-wide copy number aberrations, sequence variants, and gene fusions using cerebrospinal fluid (CSF) from pediatric patients with brain, spinal cord, and peripheral nervous system tumors. Methods Cell-free DNA was isolated from the CSF from 55 patients, including 47 patients with tumors and 8 controls. Results Abnormalities in cell-free DNA were detected in 24 (51%) patients including 11 with copy number alterations, 9 with sequence variants, and 7 with KIAA1549::BRAF fusions. Positive findings were obtained in patients spanning histologic subtypes, tumor grades, and anatomic locations. Conclusions This study demonstrates the feasibility of employing this platform in routine clinical care in upfront diagnostic and monitoring settings. Future studies are required to determine the utility of this approach for assessing response to therapy and long-term surveillance.
Collapse
Affiliation(s)
- Katrina O’Halloran
- Corresponding Author: Katrina O’Halloran, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA ()
| | - Venkata Yellapantula
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eirini Christodoulou
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
| | - Moiz Bootwalla
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
| | - Jianling Ji
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer Cotter
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nicholas Chapman
- Division of Neurosurgery, Children’s Hospital Los Angeles, CA, USA
| | - Jason Chu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Neurosurgery, Children’s Hospital Los Angeles, CA, USA
| | - Ashley Margol
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark D Krieger
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Neurosurgery, Children’s Hospital Los Angeles, CA, USA
| | - Peter A Chiarelli
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Neurosurgery, Children’s Hospital Los Angeles, CA, USA
| | - Xiaowu Gai
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaclyn A Biegel
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Passeri T, Dahmani A, Masliah-Planchon J, El Botty R, Courtois L, Vacher S, Marangoni E, Nemati F, Roman-Roman S, Adle-Biassette H, Mammar H, Froelich S, Bièche I, Decaudin D. In vivo efficacy assessment of the CDK4/6 inhibitor palbociclib and the PLK1 inhibitor volasertib in human chordoma xenografts. Front Oncol 2022; 12:960720. [PMID: 36505864 PMCID: PMC9732546 DOI: 10.3389/fonc.2022.960720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Management of advanced chordomas remains delicate considering their insensitivity to chemotherapy. Homozygous deletion of the regulatory gene CDKN2A has been described as the most frequent genetic alteration in chordomas and may be considered as a potential theranostic marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma patient-derived xenograft (PDX) models to validate and identify novel therapeutic approaches. Methods From our chordoma xenograft panel, we selected three models, two of them harboring a homozygous deletion of CDKN2A/2B genes, and the last one a PBRM1 pathogenic variant (as control). For each model, we tested the palbociclib and volasertib drugs with pharmacodynamic studies together with RT-PCR and RNAseq analyses. Results For palbociclib, we observed a significant tumor response for one of two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe any response in the three tested models. RT-PCR and RNAseq analyses showed a correlation between cell cycle markers and responses to palbociclib; finally, RNAseq analyses showed a natural enrichment of the oxidative phosphorylation genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02). Conclusion CDK4/6 inhibition appears as a promising strategy to manage advanced chordomas harboring a loss of CDKN2A/2B. However, further preclinical studies are strongly requested to confirm it and to understand acquired or de novo resistance to palbociclib, in the peculiar view of a targeting of the oxidative phosphorylation genes.
Collapse
Affiliation(s)
- Thibault Passeri
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | | | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, University of Paris Saclay, Paris, France
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Hamid Mammar
- Department of Radiotherapy - Proton Therapy Center, Institut Curie, Paris-Saclay University, Orsay, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| |
Collapse
|
4
|
Zhao C, Tan T, Zhang E, Wang T, Gong H, Jia Q, Liu T, Yang X, Zhao J, Wu Z, Wei H, Xiao J, Yang C. A chronicle review of new techniques that facilitate the understanding and development of optimal individualized therapeutic strategies for chordoma. Front Oncol 2022; 12:1029670. [PMID: 36465398 PMCID: PMC9708744 DOI: 10.3389/fonc.2022.1029670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/19/2022] [Indexed: 09/01/2023] Open
Abstract
Chordoma is a rare malignant bone tumor that mainly occurs in the sacrum and the clivus/skull base. Surgical resection is the treatment of choice for chordoma, but the local recurrence rate is high with unsatisfactory prognosis. Compared with other common tumors, there is not much research and individualized treatment for chordoma, partly due to the rarity of the disease and the lack of appropriate disease models, which delay the discovery of therapeutic strategies. Recent advances in modern techniques have enabled gaining a better understanding of a number of rare diseases, including chordoma. Since the beginning of the 21st century, various chordoma cell lines and animal models have been reported, which have partially revealed the intrinsic mechanisms of tumor initiation and progression with the use of next-generation sequencing (NGS) techniques. In this study, we performed a systematic overview of the chordoma models and related sequencing studies in a chronological manner, from the first patient-derived chordoma cell line (U-CH1) to diverse preclinical models such as the patient-derived organoid-based xenograft (PDX) and patient-derived organoid (PDO) models. The use of modern sequencing techniques has discovered mutations and expression signatures that are considered potential treatment targets, such as the expression of Brachyury and overactivated receptor tyrosine kinases (RTKs). Moreover, computational and bioinformatics techniques have made drug repositioning/repurposing and individualized high-throughput drug screening available. These advantages facilitate the research and development of comprehensive and personalized treatment strategies for indicated patients and will dramatically improve their prognoses in the near feature.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tao Tan
- Department of Orthopedics, 905 Hospital of People’s Liberation Army Navy, Shanghai, China
| | - E. Zhang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Ting Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haiyi Gong
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Qi Jia
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Tielong Liu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Xinghai Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jian Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Zhipeng Wu
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Haifeng Wei
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Cheng Yang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| |
Collapse
|
5
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
6
|
Frederico SC, Darling C, Zhang X, Huq S, Agnihotri S, Gardner PA, Snyderman CH, Wang EW, Zenonos GA. Circulating tumor DNA – A potential aid in the management of chordomas. Front Oncol 2022; 12:1016385. [PMID: 36338734 PMCID: PMC9632974 DOI: 10.3389/fonc.2022.1016385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Chordomas are a locally invasive, low-grade, CNS malignancy that are primarily found in the skull base, spine, and sacrum. They are thought to be derived from notochordal remnants and remain a significant clinical challenge due to their local invasiveness, resistance to chemoradiation, and difficulty in achieving a complete resection. Adjuvant therapy such as proton beam therapy is critical in preventing recurrence in patients who are at high risk, however this treatment is associated with increased risk of complication. Currently, intraoperative observation and imaging findings are used to determine recurrence and success of gross total resection. These methods can be unreliable due to limited operative view, bony and soft tissue involvement, and complex post-operative changes on MRI. Earlier detection of incomplete resection or recurrence will allow for earlier ability to intervene and potentially improve patient outcomes. Circulating-tumor DNA (ctDNA) is cell-free DNA that is released by tumor cells as they undergo cellular turn-over. Monitoring ctDNA has been shown to be more sensitive at predicting residual tumor than imaging in numerous solid malignancies. Furthermore, ctDNA could be detected earlier in peripheral blood as opposed to imaging changes, allowing for earlier intervention. In this review, we intend to give a brief overview of the current state of molecular diagnosis for skull base chordomas. We will then discuss current advances in the utilization of ctDNA for the management of CNS pathologies such as glioblastoma (GBM) and brain metastases. We will also discuss the role ctDNA has in the management of non-CNS pathologies such as osteosarcoma and Ewing sarcoma (EWS). Finally, we will discuss potential implications of ctDNA monitoring for chordoma management.
Collapse
Affiliation(s)
- Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corbin Darling
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Paul A. Gardner
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carl H. Snyderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eric W. Wang
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Georgios A. Zenonos
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Georgios A. Zenonos,
| |
Collapse
|
7
|
Yekula A, Tracz J, Rincon-Torroella J, Azad T, Bettegowda C. Single-Cell RNA Sequencing of Cerebrospinal Fluid as an Advanced Form of Liquid Biopsy for Neurological Disorders. Brain Sci 2022; 12:brainsci12070812. [PMID: 35884620 PMCID: PMC9313114 DOI: 10.3390/brainsci12070812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosis and longitudinal monitoring of neurological diseases are limited by the poor specificity and limited resolution of currently available techniques. Analysis of circulating cells in cerebrospinal fluid (CSF) has emerged as a promising strategy for the diagnosis, molecular characterization, and monitoring of neurological disease. In comparison to bulk sequencing analysis, single-cell sequencing studies can provide novel insights into rare cell populations and uncover heterogeneity in gene expression at a single-cell resolution, which has several implications for understanding disease pathology and treatment. Parallel development of standardized biofluid collection protocols, pre-processing strategies, reliable single-cell isolation strategies, downstream genomic analysis, and robust computational analysis is paramount for comprehensive single-cell sequencing analysis. Here we perform a comprehensive review of studies focusing on single-cell sequencing of cells in the CSF of patients with oncological or non-oncological diseases of the central nervous system.
Collapse
Affiliation(s)
- Anudeep Yekula
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Jovanna Tracz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
| | - Tej Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
- Correspondence:
| |
Collapse
|