1
|
Mair MJ, Bartsch R, Le Rhun E, Berghoff AS, Brastianos PK, Cortes J, Gan HK, Lin NU, Lassman AB, Wen PY, Weller M, van den Bent M, Preusser M. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol 2023; 20:372-389. [PMID: 37085569 DOI: 10.1038/s41571-023-00756-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Antibody-drug conjugates (ADCs), a class of targeted cancer therapeutics combining monoclonal antibodies with a cytotoxic payload via a chemical linker, have already been approved for the treatment of several cancer types, with extensive clinical development of novel constructs ongoing. Primary and secondary brain tumours are associated with high mortality and morbidity, necessitating novel treatment approaches. Pharmacotherapy of brain tumours can be limited by restricted drug delivery across the blood-brain or blood-tumour barrier, although data from phase II studies of the HER2-targeted ADC trastuzumab deruxtecan indicate clinically relevant intracranial activity in patients with brain metastases from HER2+ breast cancer. However, depatuxizumab mafodotin, an ADC targeting wild-type EGFR and EGFR variant III, did not provide a definitive overall survival benefit in patients with newly diagnosed or recurrent EGFR-amplified glioblastoma in phase II and III trials, despite objective radiological responses in some patients. In this Review, we summarize the available data on the central nervous system activity of ADCs from trials involving patients with primary and secondary brain tumours and discuss their clinical implications. Furthermore, we explore pharmacological determinants of intracranial activity and discuss the optimal design of clinical trials to facilitate development of ADCs for the treatment of gliomas and brain metastases.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quirónsalud Group, Madrid and Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
- Medical Scientia Innovation Research (MEDSIR), Barcelona, Spain
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, VIC, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Patrick Y Wen
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin van den Bent
- The Brain Tumour Center, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Karandashov IV, Golbin DA, Goryainov SA, Pronin IN, Pavlova GV. [Principles of biobanking and biobanks of central nervous system tumors in world practice]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:91-98. [PMID: 36534629 DOI: 10.17116/neiro20228606191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biobanks of central nervous system tumors are created in parallel with development of modern technologies for evaluation of molecular features of human diseases. In modern world practice, no one doubts that creation of biobanks of tumors is necessary and critical for personalized medicine. An important aspect of recent improvements in biobanks has been the expansion of tumor sample storage conditions. Development of cell technologies has made it possible to create cell cultures from tumor material that made it possible to evaluate further therapy before affecting the patient himself. Biobanks have become especially attractive in the study of brain tumors, where the peculiarity of location and blood-brain barrier complicate treatment approaches. This review describes the approaches to creation of biobanks of CNS tumors in world practice, sample storage conditions, ethical and legal regulation of biobanks, as well as experience of biobanking in different countries.
Collapse
Affiliation(s)
- I V Karandashov
- Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - D A Golbin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - G V Pavlova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
3
|
Darrigues E, Elberson BW, De Loose A, Lee MP, Green E, Benton AM, Sink LG, Scott H, Gokden M, Day JD, Rodriguez A. Brain Tumor Biobank Development for Precision Medicine: Role of the Neurosurgeon. Front Oncol 2021; 11:662260. [PMID: 33981610 PMCID: PMC8108694 DOI: 10.3389/fonc.2021.662260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuro-oncology biobanks are critical for the implementation of a precision medicine program. In this perspective, we review our first year experience of a brain tumor biobank with integrated next generation sequencing. From our experience, we describe the critical role of the neurosurgeon in diagnosis, research, and precision medicine efforts. In the first year of implementation of the biobank, 117 patients (Female: 62; Male: 55) had 125 brain tumor surgeries. 75% of patients had tumors biobanked, and 16% were of minority race/ethnicity. Tumors biobanked were as follows: diffuse gliomas (45%), brain metastases (29%), meningioma (21%), and other (5%). Among biobanked patients, 100% also had next generation sequencing. Eleven patients qualified for targeted therapy based on identification of actionable gene mutations. One patient with a hereditary cancer predisposition syndrome was also identified. An iterative quality improvement process was implemented to streamline the workflow between the operating room, pathology, and the research laboratory. Dedicated tumor bank personnel in the department of neurosurgery greatly improved standard operating procedure. Intraoperative selection and processing of tumor tissue by the neurosurgeon was integral to increasing success with cell culture assays. Currently, our institutional protocol integrates standard histopathological diagnosis, next generation sequencing, and functional assays on surgical specimens to develop precision medicine protocols for our patients. This perspective reviews the critical role of neurosurgeons in brain tumor biobank implementation and success as well as future directions for enhancing precision medicine efforts.
Collapse
Affiliation(s)
- Emilie Darrigues
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin W Elberson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Annick De Loose
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison P Lee
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ebonye Green
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ashley M Benton
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ladye G Sink
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hayden Scott
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Division of Neuropathology, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Day
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
4
|
Snyder J, Poisson LM, Noushmehr H, Castro AV, deCarvalho AC, Robin A, Mukherjee A, Lee I, Walbert T. Clinical and research applications of a brain tumor tissue bank in the age of precision medicine. Per Med 2019; 16:145-156. [PMID: 30816054 PMCID: PMC6598053 DOI: 10.2217/pme-2018-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marked progress has been made recently in the treatment of patients with central nervous system (CNS) tumors, especially gliomas. However, because of the relative rarity of these tumors compared with other malignancies, advances in the molecular/genetic analysis leading to future targeted treatments rely on systematic, organized tissue banking. Several large multi-institutional efforts have utilized major tissue banks that have yielded valuable information that may lead to a better understanding of the pathogenesis of CNS tumors. This manuscript portrays best practices for the establishment and maintenance of a well-organized CNS tumor bank. In addition, annotation for clinical and research needs is explained. The potential benefits to clinical care, as well as basic science and translational research are also described.
Collapse
Affiliation(s)
- James Snyder
- Department of Neurology, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA.,Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Laila M Poisson
- Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Houtan Noushmehr
- Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Ana V Castro
- Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Ana C deCarvalho
- Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Adam Robin
- Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Abir Mukherjee
- Department of Pathology, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Ian Lee
- Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| | - Tobias Walbert
- Department of Neurology, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA.,Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA
| |
Collapse
|