1
|
Zhou J, Sun Q, Qin Y, Liu H, Hu P, Xiong C, Ji H. Bimetallic CoCu-modified Pt species in S-1 zeolite with enhanced stability for propane dehydrogenation. J Colloid Interface Sci 2024; 663:94-102. [PMID: 38394821 DOI: 10.1016/j.jcis.2024.01.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Propane dehydrogenation (PDH) has been an outstanding technique with a bright prospect, which can meet the growing global demand for propylene. However, undesired side reactions result in the deactivation of the Pt-based catalysts, which contribute to the insufficient lifetime of the catalysts. Herein, we describe a novel catalyst by encapsulating bimetallic CoCu-modified Pt species in S-1 zeolite for efficient dehydrogenation of propane, which synergizes the confinement of zeolites and the geometric and electronic effects on Pt species for enhancing the catalyst stability. The introduction of bimetallic additives efficiently promotes the dispersion of platinum and the electron transfer between Pt species and the additives, which greatly prolongs the lifetime of the catalysts. Particularly, no obvious deactivation is observed on 0.2Pt0.3Co0.5CuK@S-1 after 93 h on stream with a weight hourly space velocity (WHSV) of 5.4 h-1, revealing an ultralow deactivation constant of 0.0011 h-1 (t = 909 h). The formation rate of propylene still maintains at a high value of 407 mol gPt-1 h-1 (WHSV = 21.6 h-1) at 580 ℃ even after on pure propane stream for 42 h. The catalyst with the bimetallic CoCu-modified Pt species in S-1 zeolite reveals ultra-high activity and stability for PDH, which is ascribed to the highly dispersed Pt species and the stabilization effect of bimetallic additives on Pt species.
Collapse
Affiliation(s)
- Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qingdi Sun
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuhan Qin
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China.
| |
Collapse
|
2
|
Liao Y, Xiao Y, Li Z, Zhou X, Liu J, Guo F, Li J, Li Y. Structural Engineering of Co-Metal-Organic Frameworks via Ce Incorporation for Improved Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307685. [PMID: 37946630 DOI: 10.1002/smll.202307685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/11/2023] [Indexed: 11/12/2023]
Abstract
The rational design of metal-organic framework (MOF)-based electrocatalysts plays a key role in achieving high-efficiency oxygen evolution reaction (OER). Herein, a synergetic morphology and electronic structure engineering strategy are proposed to design a Co-MOF nanoflower grown on carbon paper via rare-earth cerium doping (CoCe-MOF/CP). Compared with Co-MOF/CP, the developed CoCe-MOF/CP exhibited superior OER performance with a low overpotential of 267 mV at 10 mA cm-2 and outstanding long-term stability over 100 h. Theoretical calculations show that the unique 4f valence electron structure of Ce induced charge redistribution of the Co-MOF surface through the strong Co 3d-O 2p-Ce 4f orbital electronic coupling below the Fermi level. Ce-doped plays a key role in the engineering of the electronic states of the Co sites to endow them with the optimal free energy landscape for enhanced OER catalytic activity. This work provides new insights into comprehending the RE-enhanced mechanism of electrocatalysis and provides an effective strategy for the design of MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Yuanyuan Liao
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yue Xiao
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Zhiquan Li
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Xiaoqing Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Jiahao Liu
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Feng Guo
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yongxiu Li
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
3
|
Huang S, Ma S, Liu L, Jin Z, Gao P, Peng K, Jiang Y, Naseri A, Hu Z, Zhang J. P-doped Co 3S 4/NiS 2 heterostructures embedded in N-doped carbon nanoboxes: Synergistical electronic structure regulation for overall water splitting. J Colloid Interface Sci 2023; 652:369-379. [PMID: 37598436 DOI: 10.1016/j.jcis.2023.08.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Water splitting using transition metal sulfides as electrocatalysts has gained considerable attention in the field of renewable energy. However, their electrocatalytic activity is often hindered by unfavorable free energies of adsorbed hydrogen and oxygen-containing intermediates. Herein, phosphorus (P)-doped Co3S4/NiS2 heterostructures embedded in N-doped carbon nanoboxes were rationally synthesized via a pyrolysis-sulfidation-phosphorization strategy. The hollow structure of the carbon matrix and the nanoparticles contained within it not only result in a high specific surface area, but also protects them from corrosion and acts as a conductive pathway for efficient electron transfer. Density functional theory (DFT) calculations indicate that the introduction of P dopants improves the conductivity of NiS2 and Co3S4, promotes the charge transfer process, and creates new electrocatalytic sites. Additionally, the NiS2-Co3S4 heterojunctions can enhance the adsorption efficiency of hydrogen intermediates (H*) and lower the energy barrier of water splitting via a synergistic effect with P-doping. These characteristics collectively enable the titled catalyst to exhibit excellent electrocatalytic activity for water splitting in alkaline medium, requiring only small overpotentials of 150 and 257 mV to achieve a current density of 10 mA cm-2 for hydrogen and oxygen evolution reactions, respectively. This work sheds light on the design and optimization of efficient electrocatalysts for water splitting, with potential implications for renewable energy production.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuzhen Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Libin Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhiqiang Jin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Pengyan Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kaimei Peng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Amene Naseri
- Nanotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj 3135933151, Iran.
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden.
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Cui Z, Jiao W, Huang Z, Chen G, Zhang B, Han Y, Huang W. Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301465. [PMID: 37186069 DOI: 10.1002/smll.202301465] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Hydrogen energy is regarded as the ultimate energy source for future human society, and the preparation of hydrogen from water electrolysis is recognized as the most ideal way. One of the key factors to achieve large-scale hydrogen production by water splitting is the availability of highly active and stable electrocatalysts. Although non-precious metal electrocatalysts have made great strides in recent years, the best hydrogen evolution reaction (HER) electrocatalysts are still based on noble metals. Therefore, it is particularly important to improve the overall activity of the electrocatalysts while reducing the noble metals load. Alloying strategies can shoulder the burden of optimizing electrocatalysts cost and improving electrocatalysts performance. With this in mind, recent work on the application of noble metal-based alloy electrocatalysts in the field of hydrogen production from water electrolysis is summarized. In this review, first, the mechanism of HER is described; then, the current development of synthesis methods for alloy electrocatalysts is presented; finally, an example analysis of practical application studies on alloy electrocatalysts in hydrogen production is presented. In addition, at the end of this review, the prospects, opportunities, and challenges facing noble metal-based alloy electrocatalysts are tried to discuss.
Collapse
Affiliation(s)
- Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - ZeYi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Biao Zhang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South 9th Avenue, Gao Xin, Shenzhen, Guangdong, 518057, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
5
|
Jin D, Qiao F, Chu H, Xie Y. Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis. NANOSCALE 2023; 15:7202-7226. [PMID: 37038769 DOI: 10.1039/d3nr00514c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
At present, the problems of high energy consumption and low efficiency in electrocatalytic hydrogen production have limited the large-scale industrial application of this technology. Constructing effective catalysts has become the way to solve these problems. Transition metal alloys have been proved to be very promising materials in hydrogen evaluation reaction (HER). In this study, the related theories and characterization methods of electrocatalysis are summarized, and the latest progress in the application of binary, ternary, and high entropy alloys to HER in recent years is analyzed and studied. The synthesis methods and optimization strategies of transition metal alloys, including composition regulation, hybrid engineering, phase engineering, and morphological engineering were emphatically discussed, and the principles and performance mechanism analysis of these strategies were discussed in detail. Although great progress has been made in alloy catalysts, there is still considerable room for applications. Finally, the challenges, prospects, and research directions of transition metal alloys in the future were predicted.
Collapse
Affiliation(s)
- Dunyuan Jin
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Fen Qiao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, Anhui, P.R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
6
|
Integration of amorphous CoSnO3 onto wrinkled MXene nanosheets as efficient electrocatalysts for alkaline hydrogen evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Oxidized Mo2TiC2 MXene. Catalysts 2022. [DOI: 10.3390/catal12080850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The two-electron oxygen reduction reaction (2e−ORR) pathway electrochemical synthesis to H2O2 has the advantages of low investment and environmental protection and is considered to be a promising green method. Herein, the oxidized Mo2TiC2 MXene (O-Mo2TiC2) was successfully synthesized by a facile hydrothermal method as an electrocatalyst in electrocatalytic H2O2 production. The O-Mo2TiC2 achieved the 90% of H2O2 selectivity and 0.72 V vs. RHE of the onset potential. Moreover, O-Mo2TiC2 showed high charge transfer ability and long-term stable working ability of 40 h. This significantly enhanced electrocatalytic H2O2 production capacity is assigned the oxidation treatment of Mo2TiC2 MXene to generate more oxygen-containing groups in O-Mo2TiC2. This work provides a promising catalyst candidate for the electrochemical synthesis of H2O2.
Collapse
|
8
|
Guo D, Wan Z, Fang G, Zhu M, Xi B. A Tandem Interfaced (Ni 3 S 2 -MoS 2 )@TiO 2 Composite Fabricated by Atomic Layer Deposition as Efficient HER Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201896. [PMID: 35560706 DOI: 10.1002/smll.202201896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Reported herein is a highly active and durable hydrogen evolution reaction (HER) electrocatalyst, which is constructed following a tandem interface strategy and functional in alkaline and even neutral medium (pH ≈ 7). The ternary composite material, consisting of conductive nickel foam (NF) substrate, Ni3 S2 -MoS2 heterostructure, and TiO2 coating, is synthesized by the hydrothermal method and atomic layer deposition (ALD) technique. Representative results include: (1) versatile characterizations confirm the proposed composite structure and strong electronic interactions among comprised sulfide and oxide species; (2) the material outperforms commercial Pt/C by recording an overpotential of 115 mV and a Tafel slope of 67 mV dec-1 under neutral conditions. A long-term stability in alkaline electrolytes up to 200 h and impressive overall water splitting behavior (1.56 V @ 10 mA cm-2 ) are documented; (3) implementation of ALD oxide tandem layer is crucial to realize the design concept with superior HER performance by modulating a variety of heterointerface and intermediates electronic structure.
Collapse
Affiliation(s)
- Daying Guo
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhixin Wan
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Mengqi Zhu
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Xi
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Liu C, Wang X, Kong Z, Zhang L, Xin Z, She X, Sun J, Yang D, Li D. Electrostatic Interaction in Amino Protonated Chitosan-Metal Complex Anion Hydrogels: A Simple Approach to Porous Metal Carbides/N-Doped Carbon Aerogels for Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22151-22160. [PMID: 35507679 DOI: 10.1021/acsami.2c03443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the face of the increasingly serious rapid depletion of fossil fuels, exploring alternative energy conversion technologies may be a promising choice to alleviate this crisis. Transition metal carbides (TMCs)/carbon composites are considered as prospective electrocatalysts due to their high catalytic activities and structural stability. In this work, we report the simple synthesis of TMCs/N-doping carbon aerogels (TMCs/NCAs, including Fe3C/NCA, Mo3C2/NCA, and Fe3C-Mo2C/NCA) for the oxygen reduction reaction (ORR) using protonated chitosan/metal complex anion-chelated aerogels. Among them, the Fe3C/NCA composite possesses efficient ORR activity (similar to Pt/C), and the Fe3C/NCA-assembled Zn-air battery exhibits high power densities of about 250 mW cm-2. The density functional theory calculation reveals that the presence of graphite-N, pyridine-N, and carbon defects in the carbon framework effectively reduces the free energy of ORR occurring in Fe3C. This work provides a simple and extensible strategy for the preparation of TMCs from chitosan, which is expected to be extended to other metal carbides.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaoxia Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhenyu Kong
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lijie Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhefeng Xin
- Baoshan Hengfeng Textile Technology Company Limited, Baoshan 678000, China
| | - Xilin She
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jin Sun
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Dongjiang Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Daohao Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Bio-Based Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
10
|
Gong Y, Yao J, Wang P, Li Z, Zhou H, Xu C. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Dual modulation of morphology and electronic structures of VN@C electrocatalyst by W doping for boosting hydrogen evolution reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|