1
|
Chen Z, Fang P, Li J, Han X, Huang W, Cui W, Liu Z, Warren MR, Allan D, Cheng P, Yang S, Shi W. Rapid extraction of trace benzene by a crown-ether-based metal-organic framework. Natl Sci Rev 2024; 11:nwae342. [PMID: 39554229 PMCID: PMC11562822 DOI: 10.1093/nsr/nwae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 09/08/2024] [Indexed: 11/19/2024] Open
Abstract
Due to almost identical boiling points of benzene and cyclohexane, the extraction of trace benzene from cyclohexane is currently performed via the energy-intensive extractive distillation method. Their adsorptive separation by porous materials is hampered by their similar dimensions. Metal-organic frameworks (MOFs) with versatile pore environments are capable of molecular discrimination, but the separation of trace substrates in liquid-phase remains extremely challenging. Herein, we report a robust MOF (NKU-300) with triangular channels decorated with crown ether that can discriminate trace benzene from cyclohexane, exhibiting an unprecedented selectivity of 8615(10) for the mixture of benzene/cyclohexane (v/v = 1/1000). Remarkably, NKU-300 demonstrates exceptional selectivities for the extraction of benzene from cyclohexane over a wide range of concentrations of 0.1%-50% with ultrafast sorption kinetics and excellent stability. Single-crystal X-ray diffraction and computational modelling reveal that multiple supramolecular interactions cooperatively immobilise benzene molecules in the triangular channel, enabling superior separation performance. This study will promote the application of advanced sorbents with tailored binding sites for challenging industrial separations.
Collapse
Affiliation(s)
- Zhonghang Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peiyu Fang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiangnan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenhao Huang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenyue Cui
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mark R Warren
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - David Allan
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Sihai Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Jarrahi A, Aflaki A, Khakpour M, Esfandiari M. Enhancing indoor air quality: Harnessing architectural elements, natural ventilation and passive design strategies for effective pollution reduction - A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176631. [PMID: 39370000 DOI: 10.1016/j.scitotenv.2024.176631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Air pollution poses a critical global challenge with severe environmental and human health implications. The associated health risks, including premature mortality, underscore the urgency of effective mitigation strategies. Many studies focus on control strategies without considering specific contaminant types, and there is a notable gap in research on cost-effective, eco-friendly methods, especially in countries facing substantial air pollution challenges. This study aims to fill this gap by providing a comprehensive review of various air pollutants and proposing optimal passive design strategies for mitigating them in building facades. Through a structural process and comparative analysis of existing literature, this study evaluates the cost, maintenance, applicability of retrofitting, and removal efficacy of three categories of control strategies: bio-filtration, adsorbents, and water-based approaches. The results confirm that biological air purification systems are more effective than other methods at reducing PM2.5, PM10, and VOCs. Moreover, the cost analysis confirms that the more costly approaches are photocatalytic filters and metal-organic frameworks derived from the adsorbent solutions. Thus, the study suggests applying cost-effective techniques like facade biofiltration, and water-based curtain façade in areas with high air pollution. In terms of the applicability of retrofitting, the results ascertain adsorbent strategies are the most effective for reducing air pollutants in existing buildings followed by water-based methods. Considering limitations associated with certain strategies, such as the high cost and regular maintenance, this study proposes five integrated strategies for the effective control and removal of pollutants from building exteriors. By addressing these gaps in knowledge and offering practical insights, this research contributes valuable guidance for architects, policymakers, and practitioners in developing sustainable, efficient solutions to combat indoor air pollution effectively.
Collapse
Affiliation(s)
- Atiye Jarrahi
- School of Architecture and Art, University of Guilan, Rasht 41996-13776, Iran
| | - Ardalan Aflaki
- School of Architecture and Art, University of Guilan, Rasht 41996-13776, Iran.
| | - Mojgan Khakpour
- School of Architecture and Art, University of Guilan, Rasht 41996-13776, Iran
| | - Masoud Esfandiari
- Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, 10100 Turin, Italy; Infrastructure Department, SYSTRA, Turin, Italy
| |
Collapse
|
3
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Du M, Wang Y, Cao Y, Tang W, Li Z. Defect-Engineered MOF-801/Sodium Alginate Aerogel Beads for Boosting Adsorption of Pb(II). ACS APPLIED MATERIALS & INTERFACES 2024; 16:57614-57625. [PMID: 39378369 DOI: 10.1021/acsami.4c08928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Metal-organic frameworks (MOFs) are attractive adsorbents for heavy metal capture due to their superior stability, easy modification, and adjustable pore size. However, their inherent microporous structure poses challenges in achieving a higher adsorption capacity. Defect engineering is considered a simple method to create hierarchical MOFs with larger pores. Here, we employed l-aspartic acid as a mixed linker to bind Zr4+ clusters in competition with fumaric acid of MOF-801 to create defects, and the pore size was increased from 4.66 to 15.65 nm. Mercaptosuccinic acid was subsequently used as a postexchange ligand to graft the resultant MOF-801 by acid-ammonia condensation to further expand the pore size to 22.73 nm. Notably, the -NH2, -COOH, and -SH groups contributed by these two ligands increased the adsorption sites for Pb(II). The obtained defective MOF-801 with larger pores was thereafter loaded onto sodium alginate to form aerogel beads as adsorbents, and an adsorption capacity of 375.48 mg/g for Pb(II) was achieved, which is ∼51 times that of pristine MOF-801. The aerogel beads also exhibited outstanding reusability with a removal efficiency of ∼90.23% after 5 cycles of use. The adsorption mechanism of Pb(II) included ion-exchange interaction, as well as chelation interactions of Pb-O, Pb-NH2, and Pb-S. The versatile combination of defect engineering and composite beads provides novel inspirations for MOF modification for boosting heavy metal adsorption.
Collapse
Affiliation(s)
- Mengshuo Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yingying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Youyu Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
5
|
Garg N, Deep A, Sharma AL. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Crit Rev Anal Chem 2024; 54:1121-1145. [PMID: 35968634 DOI: 10.1080/10408347.2022.2106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the expansion and advancement in agricultural and chemical industries, various toxic heavy metals such as lead, cadmium, mercury, zinc, copper, arsenic etc. are continuously released into the environment. Intake of sources contaminated with such toxic metals leads to various health issues. Keeping the serious effects of these toxic metal ions in view, various organic-inorganic nanomaterials based sensors have been exploited for their detection via optical, electrochemical and colorimetric approaches. Since a chemical sensor works on the principle of interaction between the sensing layer and the analytes, a sensor material with large surface area is required to enable the largest possible interaction with the target molecules and hence the sensitivity of the chemical sensor. However, commonly employed materials such as metal oxides and conducting polymers tend to feature relatively low surface areas, and hence resulting in low sensitivity of the sensor. Metal-Organic Frameworks (MOFs) nanostructures are another category of organic-inorganic materials endowed with large surface area, ultra-high and tunable porosity, post-synthesis modification features, readily available active sites, catalytic activity, and chemical/thermal stability. These properties provide high sensitivity to the MOF based sensors due to the adsorption of large number of target analytes. The current review article focuses on MOFs based optical and electrochemical sensors for the detection of heavy metals.
Collapse
Affiliation(s)
- Naini Garg
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Materials Science & Sensor Applications (MSSA) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit L Sharma
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Wu Y, Lei D, Li J, Luo Y, Du Y, Zhang S, Zu B, Su Y, Dou X. Controlled Synthesis of Preferential Facet-Exposed Fe-MOFs for Ultrasensitive Detection of Peroxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401024. [PMID: 38597755 DOI: 10.1002/smll.202401024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Exposing different facets on metal-organic frameworks (MOFs) is highly desirable to enhance the performance for various applications, however, exploiting a concise and effective approach to achieve facet-controlled synthesis of MOFs remains challenging. Here, by modulating the ratio of metal precursors to ligands, the facet-engineered iron-based MOFs (Fe-MOFs) exhibits enhanced catalytic activity for Fenton reaction are explored, and the mechanism of facet-dependent performance is revealed in detail. Fully exposed (101) and (100) facets on spindle-shaped Fe-MOFs enable rapid oxidation of colorless o-phenylenediamine (OPD) to colored products, thereby establishing a dual-mode platform for the detection of hydrogen peroxide (H2O2) and triacetone triperoxide (TATP). Thus, a detection limit as low as 2.06 nm is achieved, and robust selectivity against a wide range of common substances (>16 types) is obtained, which is further improved by incorporating a deep learning architecture with an SE-VGG16 network model, enabling precise differentiation of oxidizing agents from captured images. The present strategy is expected will shine light on both the rational synthesis of nanomaterials with modulated morphologies and the exploitation of high-performance trace chemical sensors.
Collapse
Affiliation(s)
- Yuquan Wu
- College of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi, 830011, China
| | - Da Lei
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Jiawen Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Ying Luo
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Yuwan Du
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Shi Zhang
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi, 830011, China
| | - Yuhong Su
- College of Chemical Engineering, Xinjiang University, Urumqi, 830017, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Zhang L, Huang Y, Yan H, Cheng Y, Ye YX, Zhu F, Ouyang G. Oxygen-Centered Organic Radicals-Involved Unified Heterogeneous Self-Fenton Process for Stable Mineralization of Micropollutants in Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401162. [PMID: 38713477 DOI: 10.1002/adma.202401162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Removing organic micropollutants from water through photocatalysis is hindered by catalyst instability and substantial residuals from incomplete mineralization. Here, a novel water treatment paradigm, the unified heterogeneous self-Fenton process (UHSFP), which achieved an impressive 32% photon utilization efficiency at 470 nm, and a significant 94% mineralization of organic micropollutants-all without the continual addition of oxidants and iron ions is presented. In UHSFP, the active species differs fundamentally from traditional photocatalytic processes. One electron acceptor unit of photocatalyst acquires only one photogenerated electron to convert into oxygen-centered organic radical (OCOR), then spontaneously completing subsequent processes, including pollutant degradation, hydrogen peroxide generation, activation, and mineralization of organic micropollutants. By bolstering electron-transfer capabilities and diminishing catalyst affinity for oxygen in the photocatalytic process, the generation of superoxide radicals is effectively suppressed, preventing detrimental attacks on the catalyst. This study introduces an innovative and cost-effective strategy for the efficient and stable mineralization of organic micropollutants, eliminating the necessity for continuous chemical inputs, providing a new perspective on water treatment technologies.
Collapse
Affiliation(s)
- Liwei Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuyan Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huijie Yan
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yingyi Cheng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519082, China
| | - Fang Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gangfeng Ouyang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519082, China
| |
Collapse
|
8
|
Heaney MP, Johnson HM, Knapp JG, Bang S, Seifert S, Yaw NS, Li J, Farha OK, Zhang Q, Moreau LM. Uranyl uptake into metal-organic frameworks: a detailed X-ray structural analysis. Dalton Trans 2024; 53:5495-5506. [PMID: 38415508 DOI: 10.1039/d3dt04284g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Metal-organic frameworks (MOF) are a subclass of porous framework materials that have been used for a wide variety of applications in sensing, catalysis, and remediation. Among these myriad applications is their remarkable ability to capture substances in a variety of environments ranging from benign to extreme. Among the most common and problematic substances found throughout the world's oceans and water supplies is [UO2]2+, a common mobile ion of uranium, which is found both naturally and as a result of anthropogenic activities, leading to problematic environmental contamination. While some MOFs possess high capability for the uptake of [UO2]2+, many more of the thousands of MOFs and their modifications that have been produced over the years have yet to be studied for their ability to uptake [UO2]2+. However, studying the thousands of MOFs and their modifications presents an incredibly difficult task. As such, a way to narrow down the numbers seems imperative. Herein, we evaluate the binding behaviors as well as identify the specific binding sites of [UO2]2+ incorporated into six different Zr MOFs to elucidate specific features that improve [UO2]2+ uptake. In doing so, we also present a method for the determination and verification of these binding sites by Anomalous wide-angle X-ray scattering, X-ray fluorescence, and X-ray absorption spectroscopy. This research not only presents a way for future research into the uptake of [UO2]2+ into MOFs to be conducted but also a means to evaluate MOFs more generally for the uptake of other compounds to be applied for environmental remediation and improvement of ecosystems globally.
Collapse
Affiliation(s)
- Matthew P Heaney
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Shinhyo Bang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Soenke Seifert
- X-ray sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Natalie S Yaw
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Jiahong Li
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA, 99164 USA.
| |
Collapse
|
9
|
Yin SH, Lan BL, Yang YL, Tong YQ, Feng YF, Zhang Z. Multi-analyte fluorescence sensing based on a post-synthetically functionalized two-dimensional Zn-MOF nanosheets featuring excited-state proton transfer process. J Colloid Interface Sci 2024; 657:880-892. [PMID: 38091911 DOI: 10.1016/j.jcis.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024]
Abstract
Covalent post-synthetic modification of metal-organic frameworks (MOFs) represents an underexplored but promising avenue for allowing the addition of specific fluorescent recognition elements to produce the novel MOF-based sensory materials with multiple-analyte detection capability. Here, an excited-state proton transfer (ESPT) active sensor 2D-Zn-NS-P was designed and constructed by covalent post-synthetic incorporation of the excited-state tautomeric 2-hydroxypyridine moiety into the ultrasonically exfoliated amino-tagged 2D Zn-MOF nanosheets (2D-Zn-NS). The water-mediated ESPT process facilitates the highly accessible active sites incorporated on the surface of 2D-Zn-NS-P to specifically respond to the presence of water in common organic solvents via fluorescence turn-on behavior, and accurate quantification of trace amount of water in acetonitrile, acetone and ethanol was established using the as-synthesized nanosheet sensor with the detection sensitivity (<0.01% v/v) superior to the conventional Karl Fischer titration. Upon exposure to Fe3+ or Cr2O72-, the intense blue emission of the aqueous colloidal dispersion of 2D-Zn-NS-P was selectively quenched even in the coexistence of common inorganic interferents. The prohibition of the water-mediated ESPT process and local emission, induced by the coordination of ESPT fluorophore with Fe3+ or by Cr2O72- competitively absorbs the excitation energy, was proposed to responsible for the fluorescence turn-off sensing of the respective analytes. The present study offers the attractive prospect to develop the ESPT-based fluorescent MOF nanosheets by covalent post-synthetic modification strategy as multi-functional sensors for detection of target analytes.
Collapse
Affiliation(s)
- Shu-Hui Yin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Bi-Liu Lan
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ya-Li Yang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Fang Feng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China; College of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
10
|
Li ZH, Li M, Xu TY, Zhao BT. A viologen-derived luminescent material exhibiting photochromism, photocontrolled luminescence and selective detection of Cr 2O 72- in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123579. [PMID: 37922851 DOI: 10.1016/j.saa.2023.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Stable viologen-derived multifunctional smart materials exhibit widespread practical applications in many areas. In this study, a viologen-derived material with 4-fold interpenetrating diamondoid network, {[Cd(1,4-ndc)(cpbpy)]·2H2O}n, was successfully constructed based on asymmetrical N-(3-carboxyphenyl)-4,4'-bipyridinium (cpbpy) and 1,4-naphthalenedicarboxylic acid (1,4-H2ndc). The compound shows reversible photochromic behavior under a xenon lamp, which are proved by UV-vis spectra and EPR characterizations. Moreover, the compound with good photoluminescence properties displays photocontrolled luminescence quenching behaviors. Owing to its good water stability, the compound is then applied in luminescence sensing for the detection of Cr2O72- in aqueous solution. The corresponding luminescence quenching constant for Cr2O72- is KSV = 4.33 × 104 M-1, and the detection limit is 3.66 μM. Systematic investigations on the luminescence quenching mechanism suggest that the inner filter effect resulted in the selective detection of Cr2O72-. This study provides inspiration for the design and synthesis of target luminescent crystalline materials with rigid and asymmetric viologen-derived ligands.
Collapse
Affiliation(s)
- Zhao-Hao Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China.
| | - Min Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Tian-Yu Xu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China
| | - Bang-Tun Zhao
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471934, PR China.
| |
Collapse
|
11
|
Sahoo R, Mondal S, Chand S, Manna AK, Das MC. A Water-Stable Cationic SIFSIX MOF for Luminescent Probing of Cr 2 O 7 2- via Single-Crystal to Single-Crystal Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304581. [PMID: 37501327 DOI: 10.1002/smll.202304581] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Indexed: 07/29/2023]
Abstract
The sensing and monitoring of toxic oxo-anion contaminants in water are of significant importance to biological and environmental systems. A rare hydro-stable SIFSIX metal-organic framework, SiF6 @MOF-1, {[Cu(L)2 (H2 O)2 ]·(SiF6 )(H2 O)}n , with exchangeable SiF6 2- anion in its pore is strategically designed and synthesized, exhibiting selective detection of toxic Cr2 O7 2- oxo-anion in an aqueous medium having high sensitivity, selectivity, and recyclability through fluorescence quenching phenomena. More importantly, the recognition and ion exchange mechanism is unveiled through the rarely explored single-crystal-to-single crystal (SC-SC) fashion with well-resolved structures. A thorough SC-SC study with interfering anions (Cl- , F- , I- , NO3 - , HCO3 - , SO4 2- , SCN- , IO3 - ) revealed no such transformations to take place, as per line with quenching studies. Density functional theory calculations revealed that despite a lesser binding affinity, Cr2 O7 2- shows strong orbital mixing and large driving forces for electron transfer than SiF6 2- , and thus enlightens the fluorescence quenching mechanism. This work inaugurates the usage of a SIFSIX MOF toward sensing application domain under aqueous medium where hydrolytic stability is a prime concern for their plausible implementation as sensor materials.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Supriya Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Arun K Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, AP, 517619, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
12
|
Adhikari A, Chhetri K, Rai R, Acharya D, Kunwar J, Bhattarai RM, Jha RK, Kandel D, Kim HY, Kandel MR. (Fe-Co-Ni-Zn)-Based Metal-Organic Framework-Derived Electrocatalyst for Zinc-Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2612. [PMID: 37764640 PMCID: PMC10534837 DOI: 10.3390/nano13182612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Zinc-air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc-air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc-air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal-organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs, encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue extensively researching and developing this area to propel the advancement of ZAB technology forward and pave the way for its practical implementation across diverse fields.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Rajan Rai
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Debendra Acharya
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Jyotendra Kunwar
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University, Jeju 690-756, Republic of Korea;
| | | | | | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Mani Ram Kandel
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| |
Collapse
|
13
|
Zhang L, Bi X, Liu X, He Y, Li L, You T. Advances in the application of metal-organic framework nanozymes in colorimetric sensing of heavy metal ions. NANOSCALE 2023; 15:12853-12867. [PMID: 37490007 DOI: 10.1039/d3nr02024j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Nanozymes, which can be defined as nanomaterials with excellent catalytic function, are well known to the scientific community due to their distinct merits, such as low cost and high stability, which render them preferable to natural enzymes. As porous organic-inorganic coordination materials, metal-organic frameworks (MOFs) possess a large number of active sites and thus can effectively mimic the properties of natural enzymes. Recently, MOF-based nanozymes have also exhibited good application potential for the analysis of heavy metal ions. In comparison to the traditional detection methods for heavy metal ions, nanozyme-based colorimetric sensing permits intuitive visual analysis by using relatively simple instruments, facilitating rapid and simple on-site screening. In this minireview, the preparation of MOF-based nanozymes and the different nanozyme activity types are briefly described, such as peroxidase-like and oxidase-like, and the relevant catalytic mechanisms are elaborated. Based on this, different response mechanisms of MOF-based colorimetric methods to heavy metal ions, such as turn-off, turn-on, and turn-off-on, are discussed. In addition, the colorimetric sensing applications of MOF-based nanozymes for the detection of heavy metal ions are summarized. Finally, the current research status of MOF-based nanozymes and the future development direction are discussed.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
14
|
Zhang K, Fang ZB, Huang QQ, Zhang AA, Li JL, Li JY, Zhang Y, Zhang T, Cao R. Exfoliation of a Two-Dimensional Metal-Organic Framework for Enhanced Photocatalytic CO 2 Reduction. Inorg Chem 2023. [PMID: 37224063 DOI: 10.1021/acs.inorgchem.3c01142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A two-dimensional metal-organic framework, FICN-12, was constructed from tris[4-(1H-pyrazole-4-yl)phenyl]amine (H3TPPA) ligands and Ni2 secondary building units. The triphenylamine moiety in the H3TPPA ligand readily absorbs UV-visible photons and sensitizes the Ni center to drive photocatalytic CO2 reduction. FICN-12 can be exfoliated into monolayer and few-layer nanosheets with a "top-down" approach, which exposes more catalytic sites and increases its catalytic activity. As a result, the nanosheets (FICN-12-MONs) showed photocatalytic CO and CH4 production rates of 121.15 and 12.17 μmol/g/h, respectively, nearly 1.4 times higher than those of bulk FICN-12.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhi-Bin Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qian-Qian Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - An-An Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Ji-Long Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jun-Yu Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Teng Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Hu L, Wu W, Gong L, Zhu H, Jiang L, Hu M, Lin D, Yang K. A Novel Aluminum-Based Metal-Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angew Chem Int Ed Engl 2023; 62:e202215296. [PMID: 36698285 DOI: 10.1002/anie.202215296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Metal-organic frameworks (MOFs) are potential porous adsorbents for benzene, toluene, ethylbenzene and xylene (BTEX). A novel MOF, using low toxic aluminum (Al) as the metal, named as ZJU-620(Al), with uniform micropore size of 8.37±0.73 Å and specific surface area of 1347 m2 g-1 , was synthesized. It is constructed by one-dimensional rod-shaped AlO6 clusters, formate ligands and 4,4',4''-(2,4,6-trimethylbenzene-1,3,5-triyl) tribenzoic ligands. ZJU-620(Al) exhibits excellent chemical-thermal stability and adsorption for trace BTEX, e.g., benzene adsorption of 3.80 mmol g-1 at P/P0 =0.01 and 298 K, which is the largest one reported. Using Grand Canonical Monte Carlo simulations and Single-crystal X-ray diffraction analyses, it was observed that the excellent adsorption could be attributed to the high affinity of BTEX molecules in ZJU-620(Al) micropores because the kinetic diameters of BTEX are close up to the pore size of ZJU-620(Al).
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Li Gong
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China.,Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China
| |
Collapse
|
16
|
Pan Y, Chen D, Fan Y, Zuo J, Yang Q, Qiu F, Qiu L, Song H, Zhang S. Highly-sensitive and anti-interferential electrochemical determination of hazardous metronidazole using w-NiSO4·NiS2 coated ZIF-67-derived cobalt/nitrogen-doped carbon. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
17
|
Zhang YZ, Kong XJ, Zhou WF, Li CH, Hu H, Hou H, Liu Z, Geng L, Huang H, Zhang X, Zhang DS, Li JR. Pore Environment Optimization of Microporous Metal-Organic Frameworks with Huddled Pyrazine Pillars for C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4208-4215. [PMID: 36625524 DOI: 10.1021/acsami.2c19779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xiang-Jing Kong
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wen-Feng Zhou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Chun-Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hengnuo Hou
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Xiuling Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Da-Shuai Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
18
|
A naphthalenediimide-based Cd-MOF as solvatochromic sensor to detect organic amines. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Karmakar A, Li J. Luminescent MOFs (LMOFs): Recent Advancement Towards a Greener WLED Technology. Chem Commun (Camb) 2022; 58:10768-10788. [DOI: 10.1039/d2cc03330e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The replacement of the traditional incandescent, halogen and fluorescent lamps by white light emitting diodes (WLEDs) is expected to reduce the global electricity consumption by one-third by 2030, according to...
Collapse
|