1
|
Liang J, Chen S, Ni E, Tang J, Cao G, Wang H, Li Z, Zeng M, Fu L. High-Entropy Alloy Array via Liquid Metal Nanoreactor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403865. [PMID: 38857624 DOI: 10.1002/adma.202403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/18/2024] [Indexed: 06/12/2024]
Abstract
High-entropy alloy (HEA) nanostructures arranged into well-defined configurations hold great potential for accelerating the development of electronics, photonics, catalysis, and device integration. However, the random nucleation induced by the disparity in physicochemical properties of multiple elements makes it challenging to achieve single-particle synthesis at the patterned preset sites in the high-entropy scenario. Herein, the liquid metal nanoreactor strategy is proposed to realize the construction of HEA arrays. The coalescence of the liquid metal driven by the tendency to decrease surface energy provides a restricted environment for the nucleation and growth to form single HEA particles at the preset locations, which can be regarded as a self-confinement reaction. Liquid metal endowing a low diffusion energy barrier on the substrate and a high diffusivity of the alloy system can dynamically promote the aggregation process. As a result, the HEA array is prepared with elements up to eleven and possesses uniform periodicity, which exhibits excellent holography response in a broad spectrum. This work injects new vitality into the construction of HEA nanopatterns and provides an excellent platform for propelling their fundamental research and applications.
Collapse
Affiliation(s)
- Jingjing Liang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shurun Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Erli Ni
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jiao Tang
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Guanghui Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Cui X, Liu Y, Chen Y. Ultrafast micro/nano-manufacturing of metastable materials for energy. Natl Sci Rev 2024; 11:nwae033. [PMID: 38469545 PMCID: PMC10926976 DOI: 10.1093/nsr/nwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/13/2024] Open
Abstract
The structural engineering of metastable nanomaterials with abundant defects has attracted much attention in energy-related fields. The high-temperature shock (HTS) technique, as a rapidly developing and advanced synthesis strategy, offers significant potential for the rational design and fabrication of high-quality nanocatalysts in an ultrafast, scalable, controllable and eco-friendly way. In this review, we provide an overview of various metastable micro- and nanomaterials synthesized via HTS, including single metallic and bimetallic nanostructures, high entropy alloys, metal compounds (e.g. metal oxides) and carbon nanomaterials. Note that HTS provides a new research dimension for nanostructures, i.e. kinetic modulation. Furthermore, we summarize the application of HTS-as supporting films for transmission electron microscopy grids-in the structural engineering of 2D materials, which is vital for the direct imaging of metastable materials. Finally, we discuss the potential future applications of high-throughput and liquid-phase HTS strategies for non-equilibrium micro/nano-manufacturing beyond energy-related fields. It is believed that this emerging research field will bring new opportunities to the development of nanoscience and nanotechnology in both fundamental and practical aspects.
Collapse
Affiliation(s)
- Xiaoya Cui
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchang Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Shi W, Li Z, Gong Z, Liang Z, Liu H, Han YC, Niu H, Song B, Chi X, Zhou J, Wang H, Xia BY, Yao Y, Tian ZQ. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nat Commun 2023; 14:2294. [PMID: 37085505 PMCID: PMC10121605 DOI: 10.1038/s41467-023-38023-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Carbon-supported nanoparticles are indispensable to enabling new energy technologies such as metal-air batteries and catalytic water splitting. However, achieving ultrasmall and high-density nanoparticles (optimal catalysts) faces fundamental challenges of their strong tendency toward coarsening and agglomeration. Herein, we report a general and efficient synthesis of high-density and ultrasmall nanoparticles uniformly dispersed on two-dimensional porous carbon. This is achieved through direct carbothermal shock pyrolysis of metal-ligand precursors in just ~100 ms, the fastest among reported syntheses. Our results show that the in situ metal-ligand coordination (e.g., N → Co2+) and local ordering during millisecond-scale pyrolysis play a crucial role in kinetically dominated fabrication and stabilization of high-density nanoparticles on two-dimensional porous carbon films. The as-obtained samples exhibit excellent activity and stability as bifunctional catalysts in oxygen redox reactions. Considering the huge flexibility in coordinated precursors design, diversified single and multielement nanoparticles (M = Fe, Co, Ni, Cu, Cr, Mn, Ag, etc) were generally fabricated, even in systems well beyond traditional crystalline coordination chemistry. Our method allows for the transient and general synthesis of well-dispersed nanoparticles with great simplicity and versatility for various application schemes.
Collapse
Affiliation(s)
- Wenhui Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100091, Beijing, China
| | - Zhihao Gong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, 311200, Hangzhou, China
| | - Zihui Liang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hanwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ye-Chuang Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005, Xiamen, China
| | - Huiting Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Bo Song
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100091, Beijing, China
| | - Hua Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, 311200, Hangzhou, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Yonggang Yao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005, Xiamen, China.
| |
Collapse
|