1
|
Yang R, Cai Y, Qi Y, Tang Z, Zhu JJ, Li J, Zhu W, Chen Z. How local electric field regulates C-C coupling at a single nanocavity in electrocatalytic CO 2 reduction. Nat Commun 2024; 15:7140. [PMID: 39164320 PMCID: PMC11336232 DOI: 10.1038/s41467-024-51397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
C-C coupling is of utmost importance in the electrocatalytic reduction of CO2, as it governs the selectivity of diverse product formation. Nevertheless, the difficulties to directly observe C-C coupling pathways at a specific nanocavity hinder the advances in catalysts and electrolyzer design for efficient high-value hydrocarbon production. Here we develop a nano-confined Raman technology to elucidate the influence of the local electric field on the evolution of C-C coupling intermediates. Through precise adjustments to the Debye length in nanocavities of a copper catalyst, the overlapping of electrical double layers drives a transition in the C-C coupling pathway at a specific nanocavity from *CHO-*CO coupling to the direct dimerization of *CO species. Experimental evidence and simulations validate that a reduced potential drop across the compact layer promotes a higher yield of CO and promotes the direct dimerization of *CO species. Our findings provide insights for the development of highly selective catalyst materials tailored to promote specific products.
Collapse
Affiliation(s)
- Ruixin Yang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Yanming Cai
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Yongbing Qi
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Zhuodong Tang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Jinxiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Wenlei Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China.
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China.
| |
Collapse
|
2
|
Levell Z, Le J, Yu S, Wang R, Ethirajan S, Rana R, Kulkarni A, Resasco J, Lu D, Cheng J, Liu Y. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Chem Rev 2024; 124:8620-8656. [PMID: 38990563 DOI: 10.1021/acs.chemrev.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudheesh Ethirajan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Tang B, Fang Y, Zhu S, Bai Q, Li X, Wei L, Li Z, Zhu C. Tuning hydrogen bond network connectivity in the electric double layer with cations. Chem Sci 2024; 15:7111-7120. [PMID: 38756806 PMCID: PMC11095383 DOI: 10.1039/d3sc06904d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hydrogen bond (H-bond) network connectivity in electric double layers (EDLs) is of paramount importance for interfacial HER/HOR electrocatalytic processes. However, it remains unclear whether the cation-specific effect on H-bond network connectivity in EDLs exists. Herein, we report simulation evidence from ab initio molecular dynamics that cations at Pt(111)/water interfaces can tune the structure and the connectivity of H-bond networks in EDLs. As the surface charge density σ becomes more negative, we show that the connectivity of the H-bond networks in EDLs of the Na+ and Ca2+ systems decreases markedly; in stark contrast, the connectivity of the H-bond networks in EDLs of the Mg2+ system increases slightly. Further analysis revealed that the interplay between the hydration of cations and the interfacial water structure plays a key role in the connectivity of H-bond networks in EDLs. These findings highlight the key roles of cations in EDLs and electrocatalysis.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yeguang Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shuang Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Bai
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Xiaojiao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Laiyang Wei
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
4
|
Yang X, Ding H, Li S, Zheng S, Li JF, Pan F. Cation-Induced Interfacial Hydrophobic Microenvironment Promotes the C-C Coupling in Electrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:5532-5542. [PMID: 38362877 DOI: 10.1021/jacs.3c13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) toward C2 products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K+ vs Li+), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C1 pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CO2RR.
Collapse
Affiliation(s)
- Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
- College of Energy, Xiamen University, Xiamen 361000, China
| | - Jian-Feng Li
- College of Energy, Xiamen University, Xiamen 361000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| |
Collapse
|
5
|
Zhang Z, Li H, Shao Y, Gan L, Kang F, Duan W, Hansen HA, Li J. Molecular understanding of the critical role of alkali metal cations in initiating CO 2 electroreduction on Cu(100) surface. Nat Commun 2024; 15:612. [PMID: 38242907 PMCID: PMC10799043 DOI: 10.1038/s41467-024-44896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Molecular understanding of the solid-liquid interface is challenging but essential to elucidate the role of the environment on the kinetics of electrochemical reactions. Alkali metal cations (M+), as a vital component at the interface, are found to be necessary for the initiation of carbon dioxide reduction reaction (CO2RR) on coinage metals, and the activity and selectivity of CO2RR could be further enhanced with the cation changing from Li+ to Cs+, while the underlying mechanisms are not well understood. Herein, using ab initio molecular dynamics simulations with explicit solvation and enhanced sampling methods, we systematically investigate the role of M+ in CO2RR on Cu surface. A monotonically decreasing CO2 activation barrier is obtained from Li+ to Cs+, which is attributed to the different coordination abilities of M+ with *CO2. Furthermore, we show that the competing hydrogen evolution reaction must be considered simultaneously to understand the crucial role of alkali metal cations in CO2RR on Cu surfaces, where H+ is repelled from the interface and constrained by M+. Our results provide significant insights into the design of electrochemical environments and highlight the importance of explicitly including the solvation and competing reactions in theoretical simulations of CO2RR.
Collapse
Affiliation(s)
- Zhichao Zhang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hengyu Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yangfan Shao
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Lin Gan
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Feiyu Kang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| | - Wenhui Duan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China
- Institute for Advanced Study, Tsinghua University, Beijing, 100084, People's Republic of China
- Frontier Science Center for Quantum Information, Beijing, 100084, People's Republic of China
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
6
|
Tu X, Zhu X, Bo S, Zhang X, Miao R, Wen G, Chen C, Li J, Zhou Y, Liu Q, Chen D, Shao H, Yan D, Li Y, Jia J, Wang S. A Universal Approach for Sustainable Urea Synthesis via Intermediate Assembly at the Electrode/Electrolyte Interface. Angew Chem Int Ed Engl 2024; 63:e202317087. [PMID: 38055225 DOI: 10.1002/anie.202317087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Electrocatalytic C-N coupling process is indeed a sustainable alternative for direct urea synthesis and co-upgrading of carbon dioxide and nitrate wastes. However, the main challenge lies in the unactivated C-N coupling process. Here, we proposed a strategy of intermediate assembly with alkali metal cations to activate C-N coupling at the electrode/electrolyte interface. Urea synthesis activity follows the trend of Li+
Collapse
Affiliation(s)
- Xiaojin Tu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xiaoran Zhang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Ruping Miao
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Guobin Wen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Chen Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Jing Li
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Yangyang Zhou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Dawei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Huaiyu Shao
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Dafeng Yan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, P. R. China
| | - Yafei Li
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
7
|
Li P, Jiao Y, Huang J, Chen S. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS AU 2023; 3:2640-2659. [PMID: 37885580 PMCID: PMC10598835 DOI: 10.1021/jacsau.3c00410] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Structures of the electric double layer (EDL) at electrocatalytic interfaces, which are modulated by the material properties, the electrolyte characteristics (e.g., the pH, the types and concentrations of ions), and the electrode potential, play crucial roles in the reaction kinetics. Understanding the EDL effects in electrocatalysis has attracted substantial research interest in recent years. However, the intrinsic relationships between the specific EDL structures and electrocatalytic kinetics remain poorly understood, especially on the atomic scale. In this Perspective, we briefly review the recent advances in deciphering the EDL effects mainly in hydrogen and oxygen electrocatalysis through a multiscale approach, spanning from the atomistic scale simulated by ab initio methods to the macroscale by a hierarchical approach. We highlight the importance of resolving the local reaction environment, especially the local hydrogen bond network, in understanding EDL effects. Finally, some of the remaining challenges are outlined, and an outlook for future developments in these exciting frontiers is provided.
Collapse
Affiliation(s)
- Peng Li
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuzhou Jiao
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Huang
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Shengli Chen
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|