1
|
He L, Bi Y, Weese D, Wu J, Xu S, Ren H, Zhang F, Liu X, Chen L, Zhang J. Genetic Signature of River Capture Imprinted in Schizopygopsis Fish from the Eastern Tibetan Plateau. Genes (Basel) 2024; 15:1148. [PMID: 39336739 PMCID: PMC11431074 DOI: 10.3390/genes15091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some East Asian rivers experienced repeated rearrangements due to Indian-Asian Plates' collisions and an uplift of the Tibetan Plateau. For the upper Changjiang (Yangtze/Jinsha River), its ancient south-flowing course and subsequent capture by the middle Changjiang at the First Bend (FB) remained controversial. The DNA of freshwater fishes possess novel evolutionary signals of these tectonic events. In this study, mtDNA Cyt b sequences of endemic Schizopygopsis fish belonging to a highly specialized grade of the Schizothoracinae from the eastern Tibetan Plateau were used to infer the palaeo-drainages connectivity history of the upper Changjiang system. Through phylogenetic reconstruction, a new clade D of Schizopygopsis with three genetic clusters and subclusters (DI, DII, DIIIa, and DIIIb) were identified from the upper Yalong, Changjiang, and Yellow Rivers; the Shuiluo River; the FB-upper Changjiang; and the Litang River; respectively. Ancient drainage connections and capture signals were indicated based on these cladogenesis events and ancestral origin inference: (1) the upper Yalong River likely acted as a dispersal origin of Schizopygopsis fish to the adjacent upper Yellow and Changjiang Rivers at ca. 0.34 Ma; (2) the Litang River seemed to have directly drained into the upper Changjiang/Yangtze/Jinsha River before its capture by the Yalong River at ca. 0.90 Ma; (3) the Shuiluo River likely flowed south along a course parallel to the upper Changjiang before their connection through Hutiao Gorge; (4) a palaeo-lake across the contemporary Shuiluo, Litang, and Yalong Rivers was inferred to have served as an ancestral origin of clade D of Schizopygopsis at 1.56 Ma. Therefore, this study sheds light on disentangling ambiguous palaeo-drainage history through integrating biological and geological evidence.
Collapse
Affiliation(s)
- Lijun He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - David Weese
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA 31061, USA
| | - Jie Wu
- Shanghai Entomological Museum, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shasha Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huimin Ren
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Fenfen Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Xueqing Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Lei Chen
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Cao YQ, Wang YX, Zhao Y, Zhang J, He X, Xie P, Chen J, Sun YH. Transfer of the zp3a gene results in changes in egg adhesiveness and buoyancy in transgenic zebrafish. Zool Res 2023; 44:259-268. [PMID: 36650065 PMCID: PMC10083224 DOI: 10.24272/j.issn.2095-8137.2022.330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
Reproductive strategies and spawning habits play key roles in the evolution of endemic East Asian cyprinids. However, the molecular mechanisms underlying the regulation of spawning habits are not well understood. We recently identified zona pellucida (Zp) as the top differentially expressed protein between East Asian cyprinids that produce adhesive and semi-buoyant eggs, suggesting that Zp protein may play important roles in the regulation of egg type. In this work, we generated transgenic zebrafish in which oocyte-specific expression of zp genes from rare minnow ( Gobiocypris rarus), an East Asian cyprinid laying adhesive eggs, was driven by a zebrafish zp3.2 gene promoter. We found that the transgenic eggs obtained partial adhesiveness and exhibited alteration in hydration and buoyancy. Abnormal metabolism of vitellogenin (VTG) may contribute to enhanced hydration and/or buoyancy. Our work shows that expression of the exogenous zp3a gene from an adhesive-egg producing fish is sufficient to induce changes in both egg adhesiveness and buoyancy in zebrafish, emphasizing the important role of zp genes in the regulation of spawning habits. Our results thus provide new insights into how endemic East Asian cyprinids may have adapted to the Yangtze river-lake system via changes in spawning habits.
Collapse
Affiliation(s)
- Yu-Qing Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Xin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jia Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xian He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China. E-mail:
| | - Yu-Hua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
3
|
Abstract
Caves are home to unique and fragile biotas with high levels of endemism. However, little is known about how the biotic colonization of caves has developed over time, especially in caves from middle and low latitudes. Subtropical East Asia holds the world's largest karst landform with numerous ancient caves, which harbor a high diversity of cave-dwelling organisms and are regarded as a biodiversity hotspot. Here, we assess the temporal dynamics of biotic colonization of subtropical East Asian caves through a multi-taxon analysis with representatives of green plants, animals, and fungi. We then investigate the consequences of paleonviromental changes on the colonization dynamics of these caves in combination with reconstructions of vegetation, temperature, and precipitation. We discover that 88% of cave colonization events occurred after the Oligocene-Miocene boundary, and organisms from the surrounding forest were a major source for subtropical East Asian cave biodiversity. Biotic colonization of subtropical East Asian caves during the Neogene was subject to periods of acceleration and decrease, in conjunction with large-scale, seasonal climatic changes and evolution of local forests. This study highlights the long-term evolutionary interaction between surface and cave biotas; our climate-vegetation-relict model proposed for the subtropical East Asian cave biota may help explain the evolutionary origins of other mid-latitude subterranean biotas.
Collapse
|
4
|
Li XQ, Xiang XG, Zhang Q, Jabbour F, Ortiz RDC, Erst AS, Li ZY, Wang W. Immigration dynamics of tropical and subtropical Southeast Asian limestone karst floras. Proc Biol Sci 2022; 289:20211308. [PMID: 34982948 PMCID: PMC8727148 DOI: 10.1098/rspb.2021.1308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/02/2021] [Indexed: 01/14/2023] Open
Abstract
Ex situ origins and dispersal of taxa have played important roles in the assembly of island-like biodiversity hotspots. Insular limestone karsts in Southeast Asia are hotspots of biodiversity and endemism, but the immigration processes of their unique floras are still poorly known. Here, we used Gesneriaceae as a proxy to investigate the immigration dynamics of tropical and subtropical Southeast Asian karst floras. We present the most comprehensive phylogenetic analysis of the Old World gesneriads to date based on twelve loci. By estimating divergence times and reconstructing ancestral states (habitat, soil type and range), we found that immigration into subtropical Southeast Asian karst floras first occurred in the Early Miocene, with two peaks in the Early-Middle Miocene and the Pliocene-Early Pleistocene, whereas immigration into tropical Southeast Asian karsts initiated in the Late Eocene, with two peaks in the Late Oligocene and the Late Miocene. We also discover that Southeast Asian karst biodiversity comprises immigrant pre-adapted lineages and descendants from local acid soil ancestors, although niche shift from acid soil to karst in tropical Southeast Asian islands was lacking. This study advances our understanding of the historical assembly of Southeast Asian karst floras.
Collapse
Affiliation(s)
- Xiao-Qian Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, People's Republic of China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, Guangxi, People's Republic of China
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris 75005, France
| | - Rosa del C. Ortiz
- Missouri Botanical Garden, 4344 Shaw Blvd, St Louis, MO 63166-0299, USA
| | - Andrey S. Erst
- Central Siberian Botanical Garden, Russian Academy of Sciences, Zolotodolinskaya Street 101, Novosibirsk 630090, Russia
| | - Zhen-Yu Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Wen H, Luo T, Wang Y, Wang S, Liu T, Xiao N, Zhou J. Molecular phylogeny and historical biogeography of the cave fish genus Sinocyclocheilus (Cypriniformes: Cyprinidae) in southwest China. Integr Zool 2021; 17:311-325. [PMID: 34958525 DOI: 10.1111/1749-4877.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modern accumulations of genetic data offer unprecedented opportunities for understanding the systematic classification and origins of specific groups of organisms. The genus Sinocyclocheilus is among the most cave abundant genera in Cyprinidae, with 76 recognized species, belonging to four species groups. Recent phylogenetic studies have shown that the classification of species groups within the genus Sinocyclocheilus remains controversial. In this study, we constructed a sequence supermatrix of 26 species from four species groups of the genus Sinocyclocheilus using the mitochondrial genome to reveal phylogenetic relationships, historical biogeography and patterns of species diversification in the genus Sinocyclocheilus. Phylogenetic analysis strongly supports the monophyletic groups of the three species groups (S. jii, S. cyphotergous, and S. tingi groups) except the S. angularis group. Phylogenetic analysis showed that S. anshuiensis and S. microphthalmus, which were recognized as numbers of S. angularis group, formed a strongly supported independent clade. Therefore, we propose a new species group, the S. microphthalmus group, which contains S. anshuiensis and S. microphthalmus. Biogeographic reconstruction suggests that the living Sinocyclocheilus may have originated in north-central Guangxi at the late Eocene and dispersed outward after a vicariance at 32.31 Million years ago (Ma). Early diversification is focused on the late Oligocene (ca. 25 Ma), which is related to the second uplift of the Qinghai-Tibetan Plateau and the lateral extrusion of the Indochina at the Oligocene/Miocene boundary. Our results suggest that two uplifts of the Qinghai-Tibetan Plateau and climate change in the Miocene may have influenced the diversification of the Sinocyclocheilus lineage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huamei Wen
- School of Life Sciences, Central China Normal University, Wuhan, China.,School of Karst Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Luo
- School of Karst Sciences, Guizhou Normal University, Guiyang, China
| | - Yali Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Siwei Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Liu
- Liupanshui No. 4 Higth School, Liupanshui, China
| | - Ning Xiao
- Guiyang Nursing Vocational College, Guiyang, China
| | - Jiang Zhou
- School of Karst Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
6
|
Zheng SS, Jiang XL, Huang QJ, Deng M. Historical Dynamics of Semi-Humid Evergreen Forests in the Southeast Himalaya Biodiversity Hotspot: A Case Study of the Quercus franchetii Complex (Fagaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:774232. [PMID: 35035389 PMCID: PMC8753985 DOI: 10.3389/fpls.2021.774232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The Oligocene and Miocene are key periods in the formation of the modern topography and flora of East Asian and Indo-China. However, it is unclear how geological and climatic factors contributed to the high endemism and species richness of this region. The Quercus franchetii complex is widespread in the southeast Himalaya fringe and northern Indo-China with a long evolutionary history. It provides a unique proxy for studying the diversity pattern of evergreen woody lineages in this region since the Oligocene. In this study, we combined chloroplast (cpDNA) sequences, nuclear microsatellite loci (nSSRs), and species distribution modeling (SDM) to investigate the impacts of geological events on genetic diversity of the Q. franchetii complex. The results showed that the initial cpDNA haplotype divergence was estimated to occur during the middle Oligocene (30.7 Ma), which might have been raised by the tectonic activity at this episode to the Miocene. The nSSR results revealed two major groups of populations, the central Yunnan-Guizhou plateau (YGP) group and the peripheral distribution group when K = 2, in responding to the rapid YGP uplift during the late Miocene, which restricted gene flow between the populations in core and marginal areas. SDM analysis indicated that the distribution ranges of the Q. franchetii complex expanded northwards after the last glacial maximum, but the core distribution range in YGP was stable. Our results showed that the divergence of Q. franchetii complex is rooted in the mid-Oligocene. The early geological events during the Oligocene, and the late Miocene may play key roles to restrict seed-mediated gene flow among regions, but the pollen-mediated gene flow was less impacted. The uplifts of the YGP and the climate since LGM subsequently boosted the divergence of the populations in core and marginal areas.
Collapse
Affiliation(s)
- Si-Si Zheng
- Shanghai Chenshan Botanical Garden, Shanghai, China
- School of Ecological Technique and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Xiao-Long Jiang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Qing-Jun Huang
- School of Ecological Technique and Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Zhang XL, Liu P, Xu SL, Rizo EZ, Zhang Q, Dumont HJ, Han BP. Geographic Variation of Phyllodiaptomus tunguidus Mitogenomes: Genetic Differentiation and Phylogeny. Front Genet 2021; 12:711992. [PMID: 34531896 PMCID: PMC8439380 DOI: 10.3389/fgene.2021.711992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/03/2021] [Indexed: 12/04/2022] Open
Abstract
Phyllodiaptomus tunguidus (Copepoda: Calanoida) is largely endemic to and widespread in freshwater in southern China, where it inhabits a complex landscape from lowland to highland across an elevation gradient of 2000m. A deep genetic differentiation can be expected between its most distant geographic populations. Here, we sequenced nine mitogenomes from diverse populations. All mitogenomes contained 37 genes, including 13 protein-coding genes (PCG), two rRNA genes, 22 tRNA genes and one control region. Their base composition, genetic distance and tRNA structure indeed revealed a wide differentiation between mitogenomes. Two P. tunguidus from Guangxi near Vietnam differed from the other seven by up to 10.1%. Their tRNA-Arg had a complete clover-leaf structure, whereas that of the others did not contain an entire dihydrouridine arm. The nine mitogenomes also differed in the length of rRNA. NJ, ML, and Bayesian analyses all split them into two clades, viz. the two P. tunguidus from Guangxi (Clade 1), and the other seven (Clade 2). Both the structure and phylogeny of the mitogenomes suggest that P. tunguidus has complex geographic origin, and its populations in Clade 1 have long lived in isolation from those in Clade 2. They currently reach the level of subspecies or cryptic species. An extensive phylogenetic analysis of Copepoda further verified that Diaptomidae is the most recently diverging family in Calanoida and that P. tunguidus is at the evolutionary apex of the family.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Ecology, Jinan University, Guangzhou, China
| | - Ping Liu
- Department of Ecology, Jinan University, Guangzhou, China
| | - Shao-Lin Xu
- Department of Ecology, Jinan University, Guangzhou, China
| | - Eric Zeus Rizo
- Department of Ecology, Jinan University, Guangzhou, China.,Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, Iloilo, Philippines
| | - Qun Zhang
- Department of Ecology, Jinan University, Guangzhou, China
| | - Henri J Dumont
- Department of Ecology, Jinan University, Guangzhou, China.,Department of Biology, Ghent University, Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Attribution Analysis of Climate and Anthropic Factors on Runoff and Vegetation Changes in the Source Area of the Yangtze River from 1982 to 2016. LAND 2021. [DOI: 10.3390/land10060612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Analyzing the temporal variation of runoff and vegetation and quantifying the impact of anthropic factors and climate change on vegetation and runoff variation in the source area of the Yangtze River (SAYR), is of great significance for the scientific response to the ecological protection of the region. Therefore, the Budyko hypothesis method and multiple linear regression method were used to quantitatively calculate the contribution rates of climate change and anthropic factors to runoff and vegetation change in the SAYR. It was found that: (1) The runoff, NDVI, precipitation, and potential evaporation in the SAYR from 1982 to 2016 all showed an increasing trend. (2) The mutation year of runoff data from 1982 to 2016 in the SAYR is 2004, and the mutation year of NDVI data from 1982 to 2016 in the SAYR is 1998. (3) The contribution rates of precipitation, potential evaporation and anthropic factors to runoff change of the SAYR are 75.98%, −9.35%, and 33.37%, respectively. (4) The contribution rates of climatic factors and anthropic factors to vegetation change of the SAYR are 38.56% and 61.44%, respectively.
Collapse
|
9
|
A combined approach of mitochondrial DNA and anchored nuclear phylogenomics sheds light on unrecognized diversity, phylogeny, and historical biogeography of the torrent frogs, genus Amolops (Anura: Ranidae). Mol Phylogenet Evol 2020; 148:106789. [PMID: 32173414 DOI: 10.1016/j.ympev.2020.106789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
The genus Amolops ("torrent frogs") is one of the most species-rich genera in Ranidae, with 59 recognized species. This genus currently includes six species groups diagnosed mainly by morphology. Several recent molecular studies indicated that the classification of species groups within Amolops remains controversial, and key nodes in the phylogeny have been inadequately resolved. In addition, the diversity of Amolops remains poorly understood, especially for those from incompletely sampled regions. Herein, we investigate species-level diversity within the genus Amolops throughout southern China and Southeast Asia, and infer evolutionary relationships among the species using mtDNA data (16S, COI, and ND2). Molecular analyses indicate nine unnamed species, mostly distributed in the Himalayas. We then utilized anchored hybrid enrichment to generate a dataset representing the major mitochondrial lineages to resolve phylogenetic relationships, biogeography, and pattern of species diversification. Our resulting phylogeny strongly supports the monophyly of four previously identified species groups (the A. ricketti, A. daiyunensis, A. hainanensis, and A. monticola groups), but paraphyly for the A. mantzorum and A. marmoratus groups, as previously defined. We erect one new species group, the A. viridimaculatus group, and recognize Dubois' (1992) subgenus Amo as the A. larutensis species group. Biogeographic analysis suggests that Amolops originated on the Indo-Burma/Thai-Malay Peninsula at the Eocene/Oligocene boundary, and dispersed outward, exemplifying a common pattern observed for the origin of Asian biodiversity. The early divergence within Amolops coincides with the Himalayan uplift and the lateral extrusion of Indochina at the Oligocene/Miocene boundary. Our results show that paleoclimatic and geomorphological events have profoundly influenced the patterns of lineage diversification within Amolops.
Collapse
|
10
|
Chen Z, Li H, Zhai X, Zhu Y, He Y, Wang Q, Li Z, Jiang J, Xiong R, Chen X. Phylogeography, speciation and demographic history: Contrasting evidence from mitochondrial and nuclear markers of the Odorrana graminea sensu lato (Anura, Ranidae) in China. Mol Phylogenet Evol 2020; 144:106701. [DOI: 10.1016/j.ympev.2019.106701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
11
|
Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol Phylogenet Evol 2018; 119:170-181. [DOI: 10.1016/j.ympev.2017.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022]
|
12
|
Abstract
Abstract
The East Asian flora (EAF) is a key biodiversity hotspot for understanding the origin and evolution of Northern Hemisphere floras, but there is an ongoing debate on whether it is a museum or a cradle for seed plants. Within the EAF, two main floras, the Sino-Himalayan Flora (mainly the Rhododendron Flora) and the Sino-Japanese Flora (mainly the Metasequoia Flora), have been recognized. Previous studies suggested that the EAF is ancient and the Metasequoia Flora is older than the Rhododendron Flora. To test this hypothesis, we synthesized molecular as well as fossil data on seed plants, focusing on the biogeographical origins and historical evolution of the EAF. We compared the ages of its two constituent floras, and examined the impact of the Asian monsoon and other environmental changes on the development of EAF through meta-analysis. Our results suggest that the EAF might be relatively young, with most of its clades originating since the Miocene. The Rhododendron Flora and the Metasequoia Flora are probably of a similar age. The formation and development of the Asian monsoon might have been the main factors that have driven the evolution of EAF. In the Rhododendron Flora, the north-south mountain chains increased the concentration of species and reduced extinction, and the barriers between the east and west have resulted in species differentiation, which triggered it to become a diversity center. The EAF appears to have multiple biogeographical origins, having closely affiliated not only with other floras in the Northern Hemisphere, but also with Gondwanan floras.
Collapse
Affiliation(s)
- Yong-Sheng Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhuo Zhou
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|