1
|
Zhao T, Jin X, Li MH, Li J, Wang S, Zhang Z, Sun P, Lin S, Chen Q, Hu JS, Li Y, Jiang Y. π-Conjugation-Induced In Situ Nanoscale Ordering of Spiro-OMeTAD Boosts the Efficiency and Stability of Perovskite Solar Cells. J Am Chem Soc 2024. [PMID: 39446027 DOI: 10.1021/jacs.4c09094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Spiro-OMeTAD hole transport materials typically exhibit an amorphous state in perovskite solar cells. However, the lack of structural ordering leads to weak intermolecular interaction, inferior carrier transfer, and poor stability in devices. Herein, we developed a π-conjugation-induced short-range ordering strategy to modulate the stacking order of spiro-OMeTAD during film formation. A clear molecular ordering at the nanoscale is observed, which enhances intermolecular π-π stacking in spiro-OMeTAD and enables effective carrier extraction and favorable energy level alignment. The nanoscale-ordered spiro-OMeTAD allows the achievement of perovskite solar cells with a champion efficiency of 25.37%, surpassing devices utilizing amorphous spiro-OMeTAD (23.52%). The unencapsulated device demonstrates enhanced operational stability by retaining 98% of its initial efficiency under continuous 1 sun equivalent illumination at 60 °C for 840 h. This work establishes a significant and valid modulation concept for the stacking order of organic transport materials, paving the way for the development of efficient and stable perovskite solar cells.
Collapse
Affiliation(s)
- Tao Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Xi Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ming-Hua Li
- College of Chemical Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sunfa Wang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongyang Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Sun
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiju Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Jiang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Fu X, Zhao ZY, Guo S, Nan ZA, Meng L, Lu CZ. Enhancing Optoelectronic Performance of All-Inorganic Double Perovskites via Halogen Doping: Synergistic Screening Strategies and Multiscale Simulations. J Chem Theory Comput 2024; 20:9148-9160. [PMID: 39392784 DOI: 10.1021/acs.jctc.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Designing all-inorganic double perovskites through element mixing is a promising strategy to enhance their optoelectronic performance and structural stability. The complex interplay between multilevel structures and optoelectronic properties in element-mixed double perovskites necessitates further in-depth theoretical exploration. In this study, we employ screening strategies and multiscale simulations combining first-principles methods and device-scale continuum models to identify two novel element-mixed compounds, Rb2AgInCl3I3 and Cs2AgInCl3I3, as promising candidates for photovoltaic applications. These compounds exhibit favorable structural factors and suitable direct band gaps. Theoretical investigations using first-principles methods with the HSE06 functional reveal direct band gaps of 0.98 and 1.26 eV for Rb2AgInCl3I3 and Cs2AgInCl3I3, respectively, with corresponding optical absorption coefficients exceeding 105 cm-1 in the visible light range. Cs2AgInCl3I3 features high charge mobilities of approximately 20 cm2·V-1·s-1 and a notable single-junction spectroscopic limited maximum efficiency (SLME) of 25.54%. Further analysis using the device-scale continuum model simulated the nonradiative recombination effects on power conversion efficiency, integrating quantum-mechanically calculated optoelectronic properties. These theoretical investigations, which bridge composition engineering with multiscale simulations, provide valuable insights into screening novel, lead-free, halogen-mixed double metal perovskite optoelectronic devices, highlighting their potential for high-performance solar energy applications.
Collapse
Affiliation(s)
- Xifeng Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Zhi-Ying Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Sai Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Zi-Ang Nan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Lingyi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
3
|
Nakagawa T, Ding Y, Bu K, Lü X, Liu H, Moliterni A, Popović J, Mihalik M, Jagličić Z, Mihalik M, Vrankić M. Photophysical Behavior of Triethylmethylammonium Tetrabromoferrate(III) under High Pressure. Inorg Chem 2023; 62:19527-19541. [PMID: 38044824 DOI: 10.1021/acs.inorgchem.3c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The pressure-induced properties of hybrid organic-inorganic ferroelectrics (HOIFs) with tunable structures and selectable organic and inorganic components are important for device fabrication. However, given the structural complexity of polycrystalline HOIFs and the limited resolution of pressure data, resolving the structure-property puzzle has so far been the exception rather than the rule. With this in mind, we present a collection of in situ high-pressure data measured for triethylmethylammonium tetrabromoferrate(III), ([N(C2H5)3CH3][FeBr4]) (EMAFB) by unraveling its flexible physical and photophysical behavior up to 80 GPa. Pressure-driven X-ray diffraction and Raman spectroscopy disclose its soft and reversible structural distortion, creating room for delicate band gap modulation. During compression, orange turns dark red at ∼2 GPa, and further compression results in piezochromism, leading to opaque black, while decompressed EMAFB appears in an orange hue. Assuming that the mechanical softness of EMAFB is the basis for reversible piezochromic control, we present alternations in the electronic landscape leading to a 1.22 eV band narrowing at 20.3 GPa while maintaining the semiconducting character at 72 GPa. EMAFB exhibits an emission enhancement, manifested by an increase of photoluminescence up to 17.3 GPa, correlating with the onsets of structural distortion and amorphization. The stimuli-responsive behavior of EMAFB, exhibiting stress-activated modification of the electronic structure, can enrich the physical library of HOIFs suitable for pressure-sensing technologies.
Collapse
Affiliation(s)
- Takeshi Nakagawa
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Yang Ding
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Kejun Bu
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Xujie Lü
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Haozhe Liu
- Center for High-Pressure Science & Technology Advanced Research, 100094 Beijing, P. R. China
| | - Anna Moliterni
- Institute of Crystallography (IC)-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Jasminka Popović
- Division of Materials Physics, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marian Mihalik
- Institute of Experimental Physics, Watsonova 47, 040 01 Košice, Slovak Republic
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
| | - Matúš Mihalik
- Institute of Experimental Physics, Watsonova 47, 040 01 Košice, Slovak Republic
| | - Martina Vrankić
- Division of Materials Physics, Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Chai N, Chen X, Zeng Z, Yu R, Yue Y, Mai B, Wu J, Mai L, Cheng YB, Wang X. Photoexcitation-induced passivation of SnO 2 thin film for efficient perovskite solar cells. Natl Sci Rev 2023; 10:nwad245. [PMID: 37859635 PMCID: PMC10583279 DOI: 10.1093/nsr/nwad245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/21/2023] Open
Abstract
A high-quality tin oxide electron transport layer (ETL) is a key common factor to achieve high-performance perovskite solar cells (PSCs). However, the conventional annealing technique to prepare high-quality ETLs by continuous heating under near-equilibrium conditions requires high temperatures and a long fabrication time. Alternatively, we present a non-equilibrium, photoexcitation-induced passivation technique that uses multiple ultrashort laser pulses. The ultrafast photoexcitation and following electron-electron and electron-phonon scattering processes induce ultrafast annealing to efficiently passivate surface and bulk defects, and improve the crystallinity of SnO2, resulting in suppressing the carrier recombination and facilitating the charge transport between the ETL and perovskite interface. By rapidly scanning the laser beam, the annealing time is reduced to several minutes, which is much more efficient compared with conventional thermal annealing. To demonstrate the university and scalability of this technique, typical antisolvent and antisolvent-free processed hybrid organic-inorganic metal halide PSCs have been fabricated and achieved the power conversion efficiency (PCE) of 24.14% and 22.75% respectively, and a 12-square-centimeter module antisolvent-free processed perovskite solar module achieves a PCE of 20.26%, with significantly enhanced performance both in PCE and stability. This study establishes a new approach towards the commercialization of efficient low-temperature manufacturing of PSCs.
Collapse
Affiliation(s)
- Nianyao Chai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Xiangyu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Zhongle Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Yunfan Yue
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Bo Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan528000, China
| | - Yi-Bing Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan528000, China
| | - Xuewen Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan528000, China
| |
Collapse
|
5
|
Guo H, Liu C, Hu H, Zhang S, Ji X, Cao XM, Ning Z, Zhu WH, Tian H, Wu Y. Neglected acidity pitfall: boric acid-anchoring hole-selective contact for perovskite solar cells. Natl Sci Rev 2023; 10:nwad057. [PMID: 37274941 PMCID: PMC10237332 DOI: 10.1093/nsr/nwad057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 04/07/2024] Open
Abstract
The spontaneous formation of self-assembly monolayer (SAM) on various substrates represents an effective strategy for interfacial engineering of optoelectronic devices. Hole-selective SAM is becoming popular among high-performance inverted perovskite solar cells (PSCs), but the presence of strong acidic anchors (such as -PO3H2) in state-of-the-art SAM is detrimental to device stability. Herein, we report for the first time that acidity-weakened boric acid can function as an alternative anchor to construct efficient SAM-based hole-selective contact (HSC) for PSCs. Theoretical calculations reveal that boric acid spontaneously chemisorbs onto indium tin oxide (ITO) surface with oxygen vacancies facilitating the adsorption progress. Spectroscopy and electrical measurements indicate that boric acid anchor significantly mitigates ITO corrosion. The excess boric acid containing molecules improves perovskite deposition and results in a coherent and well-passivated bottom interface, which boosts the fill factor (FF) performance for a variety of perovskite compositions. The optimal boric acid-anchoring HSC (MTPA-BA) can achieve power conversion efficiency close to 23% with a high FF of 85.2%. More importantly, the devices show improved stability: 90% of their initial efficiency is retained after 2400 h of storage (ISOS-D-1) or 400 h of operation (ISOS-L-1), which are 5-fold higher than those of phosphonic acid SAM-based devices. Acidity-weakened boric acid SAMs, which are friendly to ITO, exhibits well the great potential to improve the stability of the interface as well as the device.
Collapse
Affiliation(s)
- Huanxin Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuo Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyu Ji
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongzhen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Zhang HY, Xiong RG. Three-dimensional narrow-bandgap perovskite semiconductor ferroelectric methylphosphonium tin triiodide for potential photovoltaic application. Chem Commun (Camb) 2023; 59:920-923. [PMID: 36597755 DOI: 10.1039/d2cc06408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel A-site three-dimensional organic-inorganic halide perovskites (3D OIHP) ferroelectric, methylphosphonium tin triiodide (MPSnI3), featuring a narrow bandgap of 1.43 eV, was synthesized. The integration of ferroelectricity with initially moderate efficiency (2.23%) may afford a promising platform to investigate the ferroelectric photovoltaic effect in organic-inorganic halide perovskite solar cells.
Collapse
Affiliation(s)
- Han-Yue Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | - Ren-Gen Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
7
|
Zhang T, Xu K, Li J, He L, Fu DW, Ye Q, Xiong RG. Ferroelectric hybrid organic-inorganic perovskites and their structural and functional diversity. Natl Sci Rev 2022; 10:nwac240. [PMID: 36817836 PMCID: PMC9935996 DOI: 10.1093/nsr/nwac240] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Molecular ferroelectrics have gradually aroused great interest in both fundamental scientific research and technological applications because of their easy processing, light weight and mechanical flexibility. Hybrid organic-inorganic perovskite ferroelectrics (HOIPFs), as a class of molecule-based ferroelectrics, have diverse functionalities owing to their unique structure and have become a hot spot in molecular ferroelectrics research. Therefore, they are extremely attractive in the field of ferroelectrics. However, there seems to be a lack of systematic review of their design, performance and potential applications. Herein, we review the recent development of HOIPFs from lead-based, lead-free and metal-free perovskites, and outline the versatility of these ferroelectrics, including piezoelectricity for mechanical energy-harvesting and optoelectronic properties for photovoltaics and light detection. Furthermore, a perspective view of the challenges and future directions of HOIPFs is also highlighted.
Collapse
Affiliation(s)
| | | | - Jie Li
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, China
| | - Lei He
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, China
| | | | | | | |
Collapse
|
8
|
Huang X, Deng G, Zhan S, Cao F, Cheng F, Yin J, Li J, Wu B, Zheng N. Solvent Gaming Chemistry to Control the Quality of Halide Perovskite Thin Films for Photovoltaics. ACS CENTRAL SCIENCE 2022; 8:1008-1016. [PMID: 35912345 PMCID: PMC9336153 DOI: 10.1021/acscentsci.2c00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 05/06/2023]
Abstract
Research on solvent chemistry, particularly for halide perovskite intermediates, has been advancing the development of perovskite solar cells (PSCs) toward commercial applications. A predictive understanding of solvent effects on the perovskite formation is thus essential. This work systematically discloses the relationship among the basicity of solvents, solvent-contained intermediate structures, and intermediate-to-perovskite α-FAPbI3 evolutions. Depending on their basicity, solvents exhibit their own favorite bonding selection with FA+ or Pb2+ cations by forming either hydrogen bonds or coordination bonds, resulting in two different kinds of intermediate structures. While both intermediates can be evolved into α-FAPbI3 below the δ-to-α thermodynamic temperature, the hydrogen-bond-favorable kind could form defect-less α-FAPbI3 via sidestepping the break of strong coordination bonds. The disclosed solvent gaming mechanism guides the solvent selection for fabricating high-quality perovskite films and thus high-performance PSCs and modules.
Collapse
Affiliation(s)
- Xiaofeng Huang
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Guocheng Deng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Shaoqi Zhan
- Department
of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Fang Cao
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Fangwen Cheng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jun Yin
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| | - Jing Li
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| | - Binghui Wu
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| | - Nanfeng Zheng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
9
|
Gao Y, Xu W, Zhang SW, Fan T, Zhang M, Ran A, Zhang X, Kang F, Wei G. Double Cascading Charge Transfer at Integrated Perovskite/Organic Bulk Heterojunctions for Extended Near-Infrared Photoresponse and Enhanced Photocurrent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106083. [PMID: 35106905 DOI: 10.1002/smll.202106083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, nearly 48.7% near-infrared (NIR) irradiation (>800 nm) of the full solar spectrum has actually not been fully utilized since the state-of-the-art perovskite film usually can only absorb the most UV-vis sunlight radiation. Herein, high efficiency integrated Cs0.15 FA0.85 PbI3 perovskite/organic bulk (PC61 BM:D18:Y6) heterojunction solar cells with enhanced low energy photon harvest until 931 nm and a high maintained open circuit voltage of 1.04 V is successfully obtained. In particular, the favorable double cascading charge transfer paths pave an interesting possibility to spatially separate electrons upon visible light excitation and holes upon NIR photon absorption simultaneously at interfaces, significantly suppressing non-radiative bimolecular recombination and reaching the photocurrent density as high as 27.48 mA cm-2 and power conversion efficiency of 20.31%. Besides, the strong hydrophobicity of the ternary organic film has effectively prevented ambient humidity penetration and improves the stability of the perovskite in the continuous aging test (humidity > 60%) compared with the control device. This work has opened a significantly new window to improve the NIR light harvest for next generation highly efficient solar cells with full spectrum response.
Collapse
Affiliation(s)
- Yu Gao
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Wenzhan Xu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Si-Wei Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Tianjie Fan
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Meng Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Aihua Ran
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Xuan Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Feiyu Kang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518000, China
| |
Collapse
|
10
|
A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. COATINGS 2022. [DOI: 10.3390/coatings12020252] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent rapid development in perovskite solar cells (PSCs) has led to significant research interest due to their notable photovoltaic performance, currently exceeding 25% power conversion efficiency for small-area PSCs. The materials used to fabricate PSCs dominate the current photovoltaic market, especially with the rapid increase in efficiency and performance. The present work reviews recent developments in PSCs’ preparation and fabrication methods, the associated advantages and disadvantages, and methods for improving the efficiency of large-area perovskite films for commercial application. The work is structured in three parts. First is a brief overview of large-area PSCs, followed by a discussion of the preparation methods and methods to improve PSC efficiency, quality, and stability. Envisioned future perspectives on the synthesis and commercialization of large-area PSCs are discussed last. Most of the growth in commercial PSC applications is likely to be in building integrated photovoltaics and electric vehicle battery charging solutions. This review concludes that blade coating, slot-die coating, and ink-jet printing carry the highest potential for the scalable manufacture of large-area PSCs with moderate-to-high PCEs. More research and development are key to improving PSC stability and, in the long-term, closing the chasm in lifespan between PSCs and conventional photovoltaic cells.
Collapse
|
11
|
Islam MA, Mohafez H, Sobayel K, Wan Muhamad Hatta SF, Hasan AKM, Khandaker MU, Akhtaruzzaman M, Muhammad G, Amin N. Degradation of Perovskite Thin Films and Solar Cells with Candle Soot C/Ag Electrode Exposed in a Control Ambient. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3463. [PMID: 34947812 PMCID: PMC8705018 DOI: 10.3390/nano11123463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Perovskite solar cells (PSCs) have already achieved efficiencies of over 25%; however, their instability and degradation in the operational environment have prevented them from becoming commercially viable. Understanding the degradation mechanism, as well as improving the fabrication technique for achieving high-quality perovskite films, is crucial to overcoming these shortcomings. In this study, we investigated details in the changes of physical properties associated with the degradation and/or decomposition of perovskite films and solar cells using XRD, FESEM, EDX, UV-Vis, Hall-effect, and current-voltage (I-V) measurement techniques. The dissociation, as well as the intensity of perovskite peaks, have been observed as an impact of film degradation by humidity. The decomposition rate of perovskite film has been estimated from the structural and optical changes. The performance degradation of novel planner structure PSCs has been investigated in detail. The PSCs were fabricated in-room ambient using candle soot carbon and screen-printed Ag electrode. It was found that until the perovskite film decomposed by 30%, the film properties and cell efficiency remained stable.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Hamidreza Mohafez
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Khan Sobayel
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (K.S.); (A.K.M.H.); (M.A.)
| | | | - Abul Kalam Mahmud Hasan
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (K.S.); (A.K.M.H.); (M.A.)
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia;
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (K.S.); (A.K.M.H.); (M.A.)
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Ghulam Muhammad
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 51178, Saudi Arabia;
| | - Nowshad Amin
- College of Engineering, Universiti Tenaga Nasional (The National Energy University), Jalan IKRAM-UNITEN, Kajang 43000, Malaysia;
| |
Collapse
|
12
|
Wang Y, Duan C, Lv P, Ku Z, Lu J, Huang F, Cheng YB. Printing strategies for scaling-up perovskite solar cells. Natl Sci Rev 2021; 8:nwab075. [PMID: 34691715 PMCID: PMC8363337 DOI: 10.1093/nsr/nwab075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/19/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
Photovoltaic technology offers a sustainable solution to the problem of soaring global energy demands. Recently, metal halide perovskite solar cells (PSCs) have attracted worldwide interest because of their high power conversion efficiency of 25.5% and great potential in becoming a disruptive technology in the photovoltaic industry. The transition from research to commercialization requires advancements of scalable deposition methods for both perovskite and charge transporting thin films. Herein, we share our view regarding the current challenges to fabrication of PSCs by printing techniques. We focus particularly on ink technologies, and summarize the strategies for printing uniform, pinhole-free perovskite films with good crystallinity. Moreover, the stability of perovskite solar modules is discussed and analyzed. We believe this review will be advantageous in the area of printable electronic devices.
Collapse
Affiliation(s)
- Yulong Wang
- Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China
| | - Changyu Duan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Pin Lv
- Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China
| | - Zhiliang Ku
- Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China
| | - Jianfeng Lu
- Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China
| | - Fuzhi Huang
- Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China
| | - Yi-Bing Cheng
- Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China
| |
Collapse
|
13
|
Qin Z, Zhang C, Chen L, Yu T, Wang X, Xiao M. Electrical Switching of Optical Gain in Perovskite Semiconductor Nanocrystals. NANO LETTERS 2021; 21:7831-7838. [PMID: 34491061 DOI: 10.1021/acs.nanolett.1c02880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perovskite semiconductor nanocrystals are promising for optical amplification and laser applications benefiting from efficient optical gain generation. Nevertheless, the pump threshold is limited by more than one exciton per nanocrystal required to generate population inversion in neutral nanocrystals due to the level degeneracy. Here, we show that by charging nanocrystals with current injection, the level degeneracy can be lifted to generate charged exciton gain with markedly low excitation density. On the basis of the scenario, we have demonstrated electrical switching of amplified spontaneous emission in films of CsPbBr3 nanocrystals sandwiched by two electrodes with over 50% threshold reduction owing to charged excitons. Our work provides an effective approach to electrically modulated optical gain in colloidal perovskite nanocrystals for potential applications in advanced laser and information technology.
Collapse
Affiliation(s)
- Zhengyuan Qin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Tao Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
14
|
Huang CR, Luo X, Chen XG, Song XJ, Zhang ZX, Xiong RG. A multiaxial lead-free two-dimensional organic-inorganic perovskite ferroelectric. Natl Sci Rev 2021; 8:nwaa232. [PMID: 34691638 PMCID: PMC8288432 DOI: 10.1093/nsr/nwaa232] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/13/2020] [Accepted: 08/19/2020] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) have recently gained tremendous interest because of their unique features in contrast to three-dimensional counterparts and traditional 2D materials. However, although some 2D HOIP ferroelectrics have been achieved, the issue of toxic Pb and uniaxial nature impede their further application. Herein, for the first time, we report a lead-free 2D HOIP multiaxial ferroelectric, [3,3-difluorocyclobutylammonium]2CuCl4 (1), which shows four ferroelectric axes and eight equivalent polarization directions, more than those of the other 2D HOIP ferroelectrics and even the inorganic perovskite ferroelectric BaTiO3 (three ferroelectric axes and six equivalent polarization directions). 1 also features a high Curie temperature of 380 K and exhibits remarkable thermochromism of color change from green-yellow to dark brown. To our knowledge, 1 is the first multiaxial lead-free 2D HOIP ferroelectric. This work sheds light on the exploration of better lead-free 2D HOIP ferroelectrics.
Collapse
Affiliation(s)
- Chao-Ran Huang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xuzhong Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiao-Gang Chen
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Xian-Jiang Song
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| |
Collapse
|
15
|
Lü X, Stoumpos C, Hu Q, Ma X, Zhang D, Guo S, Hoffman J, Bu K, Guo X, Wang Y, Ji C, Chen H, Xu H, Jia Q, Yang W, Kanatzidis MG, Mao HK. Regulating off-centering distortion maximizes photoluminescence in halide perovskites. Natl Sci Rev 2020; 8:nwaa288. [PMID: 34691729 PMCID: PMC8433095 DOI: 10.1093/nsr/nwaa288] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022] Open
Abstract
Metal halide perovskites possess unique atomic and electronic configurations that endow them with high defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress, fundamental questions remain, such as how structural distortion affects the optical properties. Addressing their relationships is considerably challenging due to the scarcity of effective diagnostic tools during structural and property tuning as well as the limited tunability achievable by conventional methods. Here, using pressure and chemical methods to regulate the metal off-centering distortion, we demonstrate the giant tunability of photoluminescence (PL) in both the intensity (>20 times) and wavelength (>180 nm/GPa) in the highly distorted halide perovskites [CH3NH3GeI3, HC(NH2)2GeI3, and CsGeI3]. Using advanced in situ high-pressure probes and first-principles calculations, we quantitatively reveal a universal relationship whereby regulating the level of off-centering distortion towards 0.2 leads to the best PL performance in the halide perovskites. By applying this principle, intense PL can still be induced by substituting CH3NH3+ with Cs+ to control the distortion in (CH3NH3)1-xCsxGeI3, where the chemical substitution plays a similar role as external pressure. The compression of a fully substituted sample of CsGeI3 further tunes the distortion to the optimal value at 0.7 GPa, which maximizes the emission with a 10-fold enhancement. This work not only demonstrates a quantitative relationship between structural distortion and PL property of the halide perovskites but also illustrates the use of knowledge gained from high-pressure research to achieve the desired properties by ambient methods.
Collapse
Affiliation(s)
- Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Constantinos Stoumpos
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Technology, Voutes Campus, University of Crete, Heraklion GR-70013, Greece
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Dongzhou Zhang
- Partnership for Extreme Crystallography, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Justin Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, WA 99164, USA
| | - Yingqi Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Cheng Ji
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Haijie Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Hongwu Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Quanxi Jia
- Department of Materials Design and Innovation, University at Buffalo—The State University of New York, Buffalo, NY 14260, USA
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | | | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| |
Collapse
|
16
|
Qiu J, Yang S. Material and Interface Engineering for High-Performance Perovskite Solar Cells: A Personal Journey and Perspective. CHEM REC 2019; 20:209-229. [PMID: 31368664 DOI: 10.1002/tcr.201900028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/15/2019] [Indexed: 11/07/2022]
Abstract
Hybrid organic-inorganic perovskite solar cells (PSCs) have become a shining star in the photovoltaic field due to their spectacular increase in power conversion efficiency (PCE) from 3.8 % to over 23 % in just few years, opening up the potential in addressing the important future energy and environment issues. The excellent photovoltaic performance can be attributed to the unique properties of the organometal halide perovskite materials, including high absorption coefficient, tunable bandgap, high defect tolerance, and excellent charge transport characteristics. The authors entered this field when pursuing research on dye-sensitized solar cells (DSCs) by leveraging nanorods arrays for vectorial transport of the extracted electrons. Soon after, we and others realized that while the organometal halide perovskite materials have excellent intrinsic properties for solar cells, interface engineering is at least equally important in the development of high-performance PSCs, which includes surface defect passivation, band alignment, and heterojunction formation. Herein, we will address this topic by presenting the historical development and recent progress on the interface engineering of PSCs primarily of our own group. This review is mainly focused on the material and interface design of the conventional n-i-p, inverted p-i-n and carbon electrode-based structure devices from our own experience and perspective. Finally, the challenges and prospects of this area for future development will also be discussed.
Collapse
Affiliation(s)
- Jianhang Qiu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang, 110016, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Almora O, García-Batlle M, Garcia-Belmonte G. Utilization of Temperature-Sweeping Capacitive Techniques to Evaluate Band Gap Defect Densities in Photovoltaic Perovskites. J Phys Chem Lett 2019; 10:3661-3669. [PMID: 31188609 DOI: 10.1021/acs.jpclett.9b00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Capacitive techniques, routinely used for solar cell parameter extraction, probe the voltage-modulation of the depletion layer capacitance isothermally as well as under varying temperature. In addition, defect states within the semiconductor band gap respond to such stimuli. Although extensively used, capacitive methods have found difficulties when applied to elucidating bulk defect bands in photovoltaic perovskites. This is because perovskite solar cells (PSCs) actually exhibit some intriguing capacitive features hardly connected to electronic defect dynamics. The commonly reported excess capacitance observed at low frequencies is originated by outer interface mechanisms and has a direct repercussion on the evaluation of band gap defect levels. Starting by updating previous observations on Mott-Schottky analysis in PSCs, it is discussed how the thermal admittance spectroscopy and the deep level transient spectroscopy characterization techniques present spectra with overlapping or even "fake" peaks caused by the mobile ion-related, interfacial excess capacitance. These capacitive techniques, when used uncritically, may be misleading and produce wrong outcomes.
Collapse
Affiliation(s)
- Osbel Almora
- Institute of Advanced Materials (INAM) , Universitat Jaume I , 12006 Castelló , Spain
- Institute of Materials for Electronics and Energy Technology (i-MEET) , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , 91058 Erlangen , Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT) , FAU , 91052 Erlangen , Germany
| | - Marisé García-Batlle
- Institute of Advanced Materials (INAM) , Universitat Jaume I , 12006 Castelló , Spain
| | - Germà Garcia-Belmonte
- Institute of Advanced Materials (INAM) , Universitat Jaume I , 12006 Castelló , Spain
| |
Collapse
|
18
|
Li Y, Wang H, Xu H, Wu S, Li X, Yu J, Huang C, Zhang Z, Sun H, Han L, Li M, Cao A, Pan Z, Li Y. Material patterning on substrates by manipulation of fluidic behavior. Natl Sci Rev 2019; 6:758-766. [PMID: 34691931 PMCID: PMC8291501 DOI: 10.1093/nsr/nwz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022] Open
Abstract
Patterned materials on substrates are of great importance for a wide variety of applications. In solution-based approaches to material patterning, fluidic flow is inevitable. Here we demonstrate not only the importance of fluidic behavior but also the methodology of engineering the flow pattern to guide the material crystallization and assembly. We show by both experiment and simulation that substrate heating, which is generally used to accelerate evaporation, produces irregular complex vortexes. Instead, a top-heating–bottom-cooling (THBC) set-up offers an inverse temperature gradient and results in a single Marangoni vortex, which is desired for ordered nanomaterial patterning near the contact line. We then realize the fabrication of large-scale patterns of iodide perovskite crystals on different substrates under THBC conditions. We further demonstrate that harnessing the flow behavior is a general strategy with great feasibility to pattern various functional materials ranging from inorganic, organic, hybrid to biological categories on different substrates, presenting great potential for practical applications.
Collapse
Affiliation(s)
- Yitan Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hao Wang
- College of Engineering, Peking University, Beijing 100871, China
| | - Henglu Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shiting Wu
- College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Li
- Electron Microscopy Laboratory, Peking University, Beijing 100871, China
| | - Jiapeng Yu
- College of Engineering, Peking University, Beijing 100871, China
| | - Chaoyu Huang
- College of Engineering, Peking University, Beijing 100871, China
| | - Zeyao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Sun
- Bruker (Beijing) Scientific Technology Co., Ltd., Beijing 100081, China
| | - Lu Han
- Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meihui Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Anyuan Cao
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhenhai Pan
- Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Wang ZX, Zhang Y, Tang YY, Li PF, Xiong RG. Fluoridation Achieved Antiperovskite Molecular Ferroelectric in [(CH3)2(F-CH2CH2)NH]3(CdCl3)(CdCl4). J Am Chem Soc 2019; 141:4372-4378. [DOI: 10.1021/jacs.8b13109] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yi Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
20
|
Jiang M, Niu Q, Tang X, Zhang H, Xu H, Huang W, Yao J, Yan B, Xia R. Improving the Performances of Perovskite Solar Cells via Modification of Electron Transport Layer. Polymers (Basel) 2019; 11:E147. [PMID: 30960131 PMCID: PMC6401837 DOI: 10.3390/polym11010147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 11/26/2022] Open
Abstract
The commonly used electron transport material (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) for perovskite solar cells (PSC) with inverted planar structures suffers from properties such as poor film-forming. In this manuscript, we demonstrate a simple method to improve the film-forming properties of PCBM by doping PCBM with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the electron transport layer (ETL), which effectively enhances the performance of CH₃NH₃PbI₃ based solar cells. With 5 wt % F8BT in PCBM, the short circuit current (JSC) and fill factor (FF) of PSC both significantly increased from 17.21 ± 0.15 mA·cm-2 and 71.1 ± 0.07% to 19.28 ± 0.22 mA·cm-2 and 74.7 ± 0.21%, respectively, which led to a power conversion efficiency (PCE) improvement from 12.6 ± 0.24% to 15 ± 0.26%. The morphology investigation suggested that doping with F8BT facilitated the formation of a smooth and uniform ETL, which was favorable for the separation of electron-hole pairs, and therefore, an improved performance of PSC.
Collapse
Affiliation(s)
- Mao Jiang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China.
| | - Qiaoli Niu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China.
| | - Xiao Tang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China.
| | - Heyi Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China.
| | - Haowen Xu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China.
| | - Wentao Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China.
| | - Jizhong Yao
- Microqanta Semiconductor Company, 998, West Wenyi Road, Hangzhou 311121, China.
| | - Buyi Yan
- Microqanta Semiconductor Company, 998, West Wenyi Road, Hangzhou 311121, China.
| | - Ruidong Xia
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, National Jiangsu Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
21
|
Li D, Shao JY, Li Y, Li Y, Deng LY, Zhong YW, Meng Q. New hole transporting materials for planar perovskite solar cells. Chem Commun (Camb) 2018; 54:1651-1654. [DOI: 10.1039/c7cc08985f] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two HTMs with triphenylamine and carbazole moieties for planar perovskite solar cells are designed, exhibiting 18.2% power conversion efficiency and better stability.
Collapse
Affiliation(s)
- Dongmei Li
- Key Laboratory for Renewable Energy (CAS)
- Beijing Key Laboratory for New Energy Materials and Devices
- Beijing National Laboratory for Condense Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
| | - Jiang-Yang Shao
- Key Laboratory of Photochemistry (CAS)
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Beijing 100190
- China
| | - Yiming Li
- Key Laboratory for Renewable Energy (CAS)
- Beijing Key Laboratory for New Energy Materials and Devices
- Beijing National Laboratory for Condense Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
| | - Yusheng Li
- Key Laboratory for Renewable Energy (CAS)
- Beijing Key Laboratory for New Energy Materials and Devices
- Beijing National Laboratory for Condense Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
| | - Li-Ye Deng
- Key Laboratory of Photochemistry (CAS)
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Beijing 100190
- China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry (CAS)
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Beijing 100190
- China
| | - Qingbo Meng
- Key Laboratory for Renewable Energy (CAS)
- Beijing Key Laboratory for New Energy Materials and Devices
- Beijing National Laboratory for Condense Matter Physics
- Institute of Physics
- Chinese Academy of Sciences
| |
Collapse
|