1
|
Lin Z, Zheng X, Chen J. Deciphering pH-dependent microbial taxa and functional gene co-occurrence in the coral Galaxea fascicularis. MICROBIAL ECOLOGY 2023; 86:1856-1868. [PMID: 36719456 DOI: 10.1007/s00248-023-02183-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
How the coral microbiome responds to oceanic pH changes due to anthropogenic climate change, including ocean acidification and deliberate artificial alkalization, remains an open question. Here, we applied a 16S profile and GeoChip approach to microbial taxonomic and gene functional landscapes in the coral Galaxea fascicularis under three pH levels (7.85, 8.15, and 8.45) and tested the influence of pH changes on the cell growth of several coral-associated strains and bacterial populations. Statistical analysis of GeoChip-based data suggested that both ocean acidification and alkalization destabilized functional cores related to aromatic degradation, carbon degradation, carbon fixation, stress response, and antibiotic biosynthesis in the microbiome, which are related to holobiont carbon cycling and health. The taxonomic analysis revealed that bacterial species richness was not significantly different among the three pH treatments, but the community compositions were significantly distinct. Acute seawater alkalization leads to an increase in pathogens as well as a stronger taxonomic shift than acidification, which is worth considering when using artificial ocean alkalization to protect coral ecosystems from ocean acidification. In addition, our co-occurrence network analysis reflected microbial community and functional shifts in response to pH change cues, which will further help to understand the functional ecological role of the microbiome in coral resilience.
Collapse
Affiliation(s)
- Zhenyue Lin
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350001, China.
| | - Xinqing Zheng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, 356015, China
| | - Jianming Chen
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Liu Z, Cai R, Chen YL, Zhuo X, He C, Zheng Q, He D, Shi Q, Jiao N. Direct Production of Bio-Recalcitrant Carboxyl-Rich Alicyclic Molecules Evidenced in a Bacterium-Induced Steroid Degradation Experiment. Microbiol Spectr 2023; 11:e0469322. [PMID: 36744924 PMCID: PMC10100752 DOI: 10.1128/spectrum.04693-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023] Open
Abstract
Carboxyl-rich alicyclic molecules (CRAM) are highly unsaturated compounds extensively distributed throughout aquatic environments and sediments. This molecular group is widely referred to as a major proxy of recalcitrant organic materials, but its direct biosynthesis remains unclear. Steroids are a typical anthropogenic contaminant and have been previously suggested to be precursors of CRAM; however, experimental evidence to support this hypothesis is lacking. Here, a steroid-degrading bacterium, Comamonas testosteroni ATCC 11996, was incubated in a liquid medium supplemented with testosterone (a typical steroid) as the sole carbon source for 90 days. Testosterone-induced metabolites (TIM) were extracted for molecular characterization and to examine the bioavailability during an additional 90-day incubation after inoculation with a natural coastal microbial assemblage. The results showed that 1,775 molecular formulas (MFs) were assigned to TIM using ultrahigh-resolution mass spectrometry, with 66.99% categorized as CRAM-like constituents. A large fraction of TIM was respired or transformed during the additional 90-day seawater incubation; nevertheless, 638 MFs of the TIM persisted or increased during incubation. Among the 638 MFs, 394 were commonly assigned in natural deep seawater samples (depths of 500 to 2,000 m) from the South China Sea. Compared to the catabolites of the well-established testosterone degradation pathway, we compiled a list of bio-refractory MFs and potential chemical structures, some of which shared structural homology with CRAM. These results demonstrated direct microbial production of bio-refractory CRAM from steroid hormones and indicated that some of the biogenic CRAM resisted microbial decomposition, potentially contributing to the aquatic refractory dissolved organic matter (DOM) pool. IMPORTANCE CRAM are an operationally defined DOM group comprising a complex mixture of carboxylated and fused alicyclic structures. This DOM group is majorly characterized as refractory DOM in the marine environment. However, the origins of the complex CRAM remain unclear. In this study, we demonstrated that testosterone (a typical steroid) could be transformed into bio-refractory CRAM by a single bacterial strain and observed that some of the CRAM highly resisted microbial degradation. Through molecular comparison and screening, potential chemical structures of steroid-induced CRAM were suggested. This study established the biological connection between steroids and bio-refractory CRAM, and it provides a novel perspective explaining the fate of terrestrial contaminants in aquatic environments.
Collapse
Affiliation(s)
- Zijing Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Yi-Lung Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ding He
- Department of Ocean Science and the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Li H, Feng X, Xiong T, He C, Wu W, Shi Q, Jiao N, Zhang Y. Green Tides Significantly Alter the Molecular Composition and Properties of Coastal DOC and Perform Dissolved Carbon Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:770-779. [PMID: 36511764 DOI: 10.1021/acs.est.2c05684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite green tides (or macroalgal blooms) having multiple negative effects, it is thought that they have a positive effect on carbon sequestration, although this aspect is rarely studied. Here, during the world's largest green tide (caused by Ulva prolifera) in the Yellow Sea, the concentration of dissolved organic carbon (DOC) increased by 20-37% in intensive macroalgal areas, and thousands of new molecular formulas rich in CHNO and CHOS were introduced. The DOC molecular species derived from U. prolifera constituted ∼18% of the total DOC molecular species in the seawater of bloom area, indicating the profound effect that green tides have on shaping coastal DOC. In addition, 46% of the macroalgae-derived DOC was labile DOC (LDOC), which had only a short residence time due to rapid microbial utilization. The remaining 54% was recalcitrant DOC (RDOC) rich in humic-like substances, polycyclic aromatics, and highly aromatic compounds that resisted microbial degradation and therefore have the potential to play a role in long-term carbon sequestration. Notably, source analysis showed that in addition to the microbial carbon pump, macroalgae are also an important source of RDOC. The number of RDOC molecular species contributed by macroalgae even exceed (77 vs 23%) that contributed by microorganisms.
Collapse
Affiliation(s)
- Hongmei Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Xiong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Wangchi Wu
- Qingdao Municipal Bureau of Ecology and Environment, Qingdao 266003, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Yongyu Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zheng X, Cai R, Yao H, Zhuo X, He C, Zheng Q, Shi Q, Jiao N. Experimental Insight into the Enigmatic Persistence of Marine Refractory Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17420-17429. [PMID: 36347804 DOI: 10.1021/acs.est.2c04136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More than 90% of marine dissolved organic matter (DOM) is biologically recalcitrant. This recalcitrance has been attributed to intrinsically refractory molecules or to low concentrations of molecules, but their relative contributions are a long-standing debate. Characterizing the molecular composition of marine DOM and its bioavailability is critical for understanding this uncertainty. Here, using different sorbents, DOM was solid-phase extracted from coastal, epipelagic, and deep-sea water samples for molecular characterization and was subjected to a 180-day incubation. 1H nuclear magnetic resonance spectroscopy and ultra-high-resolution mass spectrometry (UHRMS) analyses revealed that all of the DOM extracts contained refractory carboxyl-rich alicyclic molecules, accompanied with minor bio-labile components, for example, carbohydrates. Furthermore, dissolved organic carbon concentration analysis showed that a considerable fraction of the extracted DOM (86-95%) amended in the three seawater samples resisted microbial decomposition throughout the 180-day heterotrophic incubation, even when concentrated threefold. UHRMS analysis revealed that DOM composition remained mostly invariant in the 180-day deep-sea incubations. These results underlined that the dilution and intrinsic recalcitrance hypotheses are not mutually exclusive in explaining the recalcitrance of oceanic DOM, and that the intrinsically refractory DOM likely has a relatively high contribution to the solid-phase extractable DOM in the ocean.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat Commun 2022; 13:5757. [PMID: 36180485 PMCID: PMC9525700 DOI: 10.1038/s41467-022-33448-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Chiral discrimination is critical in environmental and life sciences. However, an ideal chiral discrimination strategy has not yet been developed because of the inevitable nonspecific binding entity of wrong enantiomers or insufficient intrinsic optical activities of chiral molecules. Here, we propose an "inspector" recognition mechanism (IRM), which is implemented on a chiral imprinted polydopamine (PDA) layer coated on surface-enhanced Raman scattering (SERS) tag layer. The IRM works based on the permeability change of the imprinted PDA after the chiral recognition and scrutiny of the permeability by an inspector molecule. Good enantiomer can specifically recognize and fully fill the chiral imprinted cavities, whereas the wrong cannot. Then a linear shape aminothiol molecule, as an inspector of the recognition status is introduced, which can only percolate through the vacant and nonspecifically occupied cavities, inducing the SERS signal to decrease. Accordingly, chirality information exclusively stems from good enantiomer specific binding, while nonspecific recognition of wrong enantiomer is curbed. The IRM benefits from sensitivity and versatility, enabling absolute discrimination of a wide variety of chiral molecules regardless of size, functional groups, polarities, optical activities, Raman scattering, and the number of chiral centers.
Collapse
|
6
|
Li H, Zhang Z, Xiong T, Tang K, He C, Shi Q, Jiao N, Zhang Y. Carbon Sequestration in the Form of Recalcitrant Dissolved Organic Carbon in a Seaweed (Kelp) Farming Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9112-9122. [PMID: 35686906 DOI: 10.1021/acs.est.2c01535] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Under climate change scenarios, the contribution of macroalgae to carbon sequestration has attracted wide attention. As primary producers, macroalgae can release substantial amounts of dissolved organic carbon (DOC) in seawater. However, little is known about the molecular composition and chemical properties of DOC derived from macroalgae and which of them are recalcitrant DOC (RDOC) that can be sequestered for a long time in the ocean. In the most intensive seaweed (kelp) farming area (Sanggou Bay) in China, we found that kelp mariculture not only significantly increased DOC concentration, but also introduced a variety of new DOC molecular species, many of which were sulfur-containing molecules. A long-term DOC degradation experiment revealed that those DOC with strong resistance to microbial degradation, i.e., RDOC, account for approximately 58% of the DOC extracted from kelp mariculture area. About 85% (3587 out of 4224 with different chemical features) of the RDOC molecular species were steadily present throughout the long-term degradation process. 15% (637 out of 4224 with different chemical features) of the RDOC molecular species were likely newly generated by microorganisms after metabolizing macroalgae-derived labile DOC. All these stable RDOC should be included in the blue carbon budgets of seaweed.
Collapse
Affiliation(s)
- Hongmei Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Tianqi Xiong
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Kunxian Tang
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Lian J, Zheng X, Zhuo X, Chen YL, He C, Zheng Q, Lin TH, Sun J, Guo W, Shi Q, Jiao N, Cai R. Microbial transformation of distinct exogenous substrates into analogous composition of recalcitrant dissolved organic matter. Environ Microbiol 2021; 23:2389-2403. [PMID: 33559211 DOI: 10.1111/1462-2920.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023]
Abstract
Oceanic dissolved organic matter (DOM) comprises a complex molecular mixture which is typically refractory and homogenous in the deep layers of the ocean. Though the refractory nature of deep-sea DOM is increasingly attributed to microbial metabolism, it remains unexplored whether ubiquitous microbial metabolism of distinct carbon substrates could lead to similar molecular composition of refractory DOM. Here, we conducted microbial incubation experiments using four typically bioavailable substrates (L-alanine, trehalose, sediment DOM extract, and diatom lysate) to investigate how exogenous substrates are transformed by a natural microbial assemblage. The results showed that although each-substrate-amendment induced different changes in the initial microbial assemblage and the amended substrates were almost depleted after 90 days of dark incubation, the bacterial community compositions became similar in all incubations on day 90. Correspondingly, revealed by ultra-high resolution mass spectrometry, molecular composition of DOM in all incubations became compositionally consistent with recalcitrant DOM and similar toward that of DOM from the deep-sea. These results indicate that while the composition of natural microbial communities can shift with substrate exposures, long-term microbial transformation of distinct substrates can ultimately lead to a similar refractory DOM composition. These findings provide an explanation for the homogeneous and refractory features of deep-sea DOM.
Collapse
Affiliation(s)
- Jie Lian
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, WE, 6708, Netherlands
| | - Xiaoxuan Zheng
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing, 102249, China
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing, 102249, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| | - Weidong Guo
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing, 102249, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Puigcorbé V, Ruiz-González C, Masqué P, Gasol JM. Sampling Device-Dependence of Prokaryotic Community Structure on Marine Particles: Higher Diversity Recovered by in situ Pumps Than by Oceanographic Bottles. Front Microbiol 2020; 11:1645. [PMID: 32760385 PMCID: PMC7373737 DOI: 10.3389/fmicb.2020.01645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 01/24/2023] Open
Abstract
Microbes associated with sinking marine particles play key roles in carbon sequestration in the ocean. The sampling of particle-attached microorganisms is often done with sediment traps or by filtration of water collected with oceanographic bottles, both involving a certain time lapse between collection and processing of samples that may result in changes in particle-attached microbial communities. Conversely, in situ water filtration through submersible pumps allows a faster storage of sampled particles, but it has rarely been used to study the associated microbial communities and has never been compared to other particle-sampling methods in terms of the recovery of particle microbial diversity. Here we compared the prokaryotic communities attached to small (1–53 μm) and large (>53 μm) particles collected from the mesopelagic zone (100–300 m) of two Antarctic polynyas using in situ pumps (ISP) and oceanographic bottles (BTL). Each sampling method retrieved largely different particle-attached communities, suggesting that they capture different kinds of particles. These device-driven differences were greater for large particles than for small particles. Overall, the ISP recovered 1.5- to 3-fold more particle-attached bacterial taxa than the BTL, and different taxonomic groups were preferentially recovered by each method. In particular, typical particle-attached groups such as Planctomycetes and Deltaproteobacteria recovered with ISP were nearly absent from BTL samples. Our results suggest that the method used to sample marine particles has a strong influence in our view of their associated microbial communities.
Collapse
Affiliation(s)
- Viena Puigcorbé
- School of Science, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Pere Masqué
- School of Science, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia.,Institut de Ciència i Tecnologia Ambientals (ICTA), Bellaterra, Spain.,Department of Physics, Autonomous University of Barcelona, Barcelona, Spain.,International Atomic Energy Agency, Monaco City, Monaco
| | - Josep M Gasol
- School of Science, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia.,Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
9
|
Dang H. Grand Challenges in Microbe-Driven Marine Carbon Cycling Research. Front Microbiol 2020; 11:1039. [PMID: 32655507 PMCID: PMC7324536 DOI: 10.3389/fmicb.2020.01039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Frontiers Science Center for Ocean Carbon Sink and Climate Change, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Liu WW, Pan J, Feng X, Li M, Xu Y, Wang F, Zhou NY. Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales. Environ Microbiol 2019; 22:329-342. [PMID: 31691434 DOI: 10.1111/1462-2920.14850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/26/2019] [Accepted: 11/03/2019] [Indexed: 01/09/2023]
Abstract
Thermoprofundales (Marine Benthic Group D archaea, MBG-D) is a newly proposed archaeal order and widely distributed in global marine sediment, and the members in the order may play a vital role in carbon cycling. However, the lack of pure cultures of these oeganisms has hampered the recognition of their catabolic roles. Here, by constructing high-quality metagenome-assembled genomes (MAGs) of two new subgroups of Thermoprofundales from hydrothermal sediment and predicting their catabolic pathways, we here provide genomic evidences that Thermoprofundales are capable of degrading aromatics via the phenylacetic acid (PAA) pathway. Then, the gene sequences of phenylacetyl-CoA ligase (PCL), a key enzyme for the PAA pathway, were searched in reference genomes. The widespread distribution of PCL genes among 14.9% of archaea and 75.9% of Thermoprofundales further supports the importance of the PAA pathway in archaea, particularly in Thermoprofundales where no ring-cleavage dioxygenases were found. Two PCLs from Thermoprofundales MAGs, PCLM8-3 and PCLM10-15 , were able to convert PAA to phenylacetyl-CoA (PA-CoA) in vitro, demonstrating the involvement of Thermoprofundales in aromatics degradation through PAA via CoA activation. Their acid tolerance (pH 5-7), high-optimum temperatures (60°C and 80°C), thermostability (stable at 60°C and 50°C for 48 h) and broad substrate spectra imply that Thermoprofundales are capable of transforming aromatics under extreme conditions. Together with the evidence of in situ transcriptional activities for most genes related to the aromatics pathway in Thermoprofundales, these genomic, and biochemical evidences highlight the essential role of this ubiquitous and abundant archaeal order in the carbon cycle of marine sediments.
Collapse
Affiliation(s)
- Wei-Wei Liu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Modelling the complexity of plankton communities exploiting omics potential: From present challenges to an integrative pipeline. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Zhang C, Dang H, Azam F, Benner R, Legendre L, Passow U, Polimene L, Robinson C, Suttle CA, Jiao N. Evolving paradigms in biological carbon cycling in the ocean. Natl Sci Rev 2018. [DOI: 10.1093/nsr/nwy074] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Carbon is a keystone element in global biogeochemical cycles. It plays a fundamental role in biotic and abiotic processes in the ocean, which intertwine to mediate the chemistry and redox status of carbon in the ocean and the atmosphere. The interactions between abiotic and biogenic carbon (e.g. CO2, CaCO3, organic matter) in the ocean are complex, and there is a half-century-old enigma about the existence of a huge reservoir of recalcitrant dissolved organic carbon (RDOC) that equates to the magnitude of the pool of atmospheric CO2. The concepts of the biological carbon pump (BCP) and the microbial loop (ML) shaped our understanding of the marine carbon cycle. The more recent concept of the microbial carbon pump (MCP), which is closely connected to those of the BCP and the ML, explicitly considers the significance of the ocean's RDOC reservoir and provides a mechanistic framework for the exploration of its formation and persistence. Understanding of the MCP has benefited from advanced ‘omics’ and novel research in biological oceanography and microbial biogeochemistry. The need to predict the ocean's response to climate change makes an integrative understanding of the BCP, ML and MCP a high priority. In this review, we summarize and discuss progress since the proposal of the MCP in 2010 and formulate research questions for the future.
Collapse
Affiliation(s)
- Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Benner
- Department of Biological Sciences and School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA
| | - Louis Legendre
- Sorbonne Université, Laboratoire d’Océanographie de Villefranche, LOV, 06230 Villefranche-sur-Mer, France
| | - Uta Passow
- Marine Science Institute, University of California Santa Barbara, CA 93106, USA
| | - Luca Polimene
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - Carol Robinson
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Botany, and Microbiology and Immunology, and the Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|