1
|
Bayoglu M, Ozturk Bintepe M, Kanit L, Balkan B, Gozen O, Koylu EO, Keser A. Decreased anxiety-like behavior in a selectively bred high nicotine-preferring rat line. Int J Neurosci 2024; 134:1403-1413. [PMID: 37929683 DOI: 10.1080/00207454.2023.2279505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Genetic vulnerability contributes significantly to the individual variability observed in nicotine dependence. Selective breeding for sensitivity to a particular effect of abused drugs has produced rodent lines useful for studying genetic vulnerability to drug addiction. Previous research showed that anxiety-related personality traits are associated with nicotine dependence. Therefore, we examined the differences in anxiety-like behavior between a high nicotine-preferring rat line and their controls. At the beginning of the study, all rats, naïve to any drug, were exposed sequentially to open field arena, marble-burying and elevated plus-maze paradigms. In the second step, all rats received nicotine in drinking water for 7 weeks. Behavioral tests were rerun on the final 2 weeks of chronic nicotine treatment. Elevated plus-maze testings under basal condition and during chronic nicotine treatment showed that the time spent on the open arms, preference for being in the open arms, and the latency to enter the closed arms were higher, whereas open arm avoidance index was lower in nicotine-preferring rats compared to the controls. In the open field test, nicotine-preferring rats spent longer time in the central zone and excreted less fecal pellets; they buried less marbles in the marble-burying test. These findings indicate a lower level of anxiety-like behavior in nicotine-preferring rat line under basal conditions and during chronic nicotine treatment. We conclude that lower anxiety level in nicotine-preferring rat line is consistent with novelty-seeking personality type and may increase vulnerability to nicotine dependence in this rat line.
Collapse
Affiliation(s)
- Merve Bayoglu
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
| | | | - Lutfiye Kanit
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Burcu Balkan
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Oguz Gozen
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Ersin O Koylu
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Aysegul Keser
- Neuroscience Department, Ege University, Institute of Health Sciences, Izmir, Turkey
- Faculty of Medicine, Physiology Department, Ege University, Izmir, Turkey
- Center for Brain Research, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Jha NA, Ayoub SM, Flesher MM, Morton K, Sikkink M, de Guglielmo G, Khokhar JY, Minassian A, Brody AL, Young JW. Acute nicotine vapor normalizes sensorimotor gating and reduces locomotor activity deficits in HIV-1 transgenic rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599641. [PMID: 38948796 PMCID: PMC11212989 DOI: 10.1101/2024.06.18.599641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Rationale Despite improved life expectancy of people with HIV (PWH), HIV-associated neurocognitive impairment (NCI) persists, alongside deficits in sensorimotor gating and neuroinflammation. PWH exhibit high smoking rates, possibly due to neuroprotective, anti-inflammatory, and cognitive-enhancing effects of nicotine, suggesting potential self-medication. Objectives Here, we tested the effects of acute nicotine vapor exposure on translatable measures of sensorimotor gating and exploratory behavior in the HIV-1 transgenic (HIV-1Tg) rat model of HIV. Methods Male and female HIV-1Tg and F344 control rats (n=57) were exposed to acute nicotine or vehicle vapor. Sensorimotor gating was assessed using prepulse inhibition (PPI) of the acoustic startle response, and exploratory behavior was evaluated using the behavioral pattern monitor (BPM). Results Vehicle-treated HIV-1Tg rats exhibited PPI deficits at low prepulse intensities compared to F344 controls, as seen previously. No PPI deficits were observed in nicotine-treated HIV1-Tg rats, however. HIV-1Tg rats were hypoactive in the BPM relative to controls, whilst nicotine vapor increased activity and exploratory behavior across genotypes. Cotinine analyses confirmed comparable levels of the primary metabolite of nicotine across genotypes. Conclusions Previous findings of PPI deficits in HIV-1Tg rats were replicated and, importantly, attenuated by acute nicotine vapor. Evidence for similar cotinine levels suggest a nicotine-specific effect in HIV-1Tg rats. HIV-1Tg rats had reduced exploratory behavior compared to controls, attenuated by acute nicotine vapor. Therefore, acute nicotine may be beneficial for remediating sensorimotor and locomotor activity deficits in PWH. Future studies should determine the long-term effects of nicotine vapor on similar HIV/NCI-relevant behaviors.
Collapse
Affiliation(s)
- Neal A. Jha
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Samantha M. Ayoub
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M. Melissa Flesher
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kathleen Morton
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Megan Sikkink
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jibran Y. Khokhar
- Department of Anatomy and Cell Biology, University of Western Ontario 1151 Richmond Street, London, ON N61 3K7, Canada
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Arthur L. Brody
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Jared W. Young
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
3
|
Bekci E, Gokmen RC, Kanit L, Gozen O, Balkan B, Koylu EO, Keser A. Enhanced Novel Object Recognition and Spatial Memory in Rats Selectively Bred for High Nicotine Preference. Brain Sci 2024; 14:427. [PMID: 38790406 PMCID: PMC11118842 DOI: 10.3390/brainsci14050427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This study examined the influence of genetic background on cognitive performance in a selectively bred high nicotine-preferring (NP) rat line. Using the novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) tests, we evaluated object memory, spatial memory, and spatial navigation in nicotine-naive NP rats compared to controls. Our results demonstrate that in the NOR test, both male and female NP rats spent more time exploring the novel object (higher discrimination index) compared to sex-matched controls. In the NLR, the discrimination index differed significantly from zero chance (no preference) in both NP males and females but not in controls, indicating enhanced spatial memory in the NP line. During MWM acquisition, the NP groups and control males took a shorter path to reach the platform compared to control females. On the probe trial, the distance traveled in the target quadrant was longer for NP males and females compared to their respective controls, suggesting enhanced spatial navigation and learning in the NP rats. The interesting preference for novel objects and locations displayed by NP rats may indicate a potential novelty-seeking phenotype in this line. These results highlight the complex interplay between genetic factors, cognitive function, and nicotine preference.
Collapse
Affiliation(s)
- Eren Bekci
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
| | - Ramazan Can Gokmen
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Lutfiye Kanit
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Oguz Gozen
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Burcu Balkan
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Ersin O. Koylu
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Aysegul Keser
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| |
Collapse
|
4
|
Cirino TJ, McLaughlin JP. Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neurosci Lett 2021; 753:135877. [PMID: 33838257 DOI: 10.1016/j.neulet.2021.135877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Despite successful viral suppression by combinatorial anti-retroviral therapy, HIV infection continues to negatively impact the quality of life of patients by promoting neuropathy and HIV-Associated Neurocognitive Disorders (HAND), where substance use disorder (SUD) is highly comorbid and known to worsen health outcomes. While substance abuse exacerbates the progression of HIV, emerging evidence also suggests the virus may potentiate the rewarding effect of abused substances. As HIV does not infect neurons, these effects are theorized to be mediated by viral proteins. Key among these proteins are HIV-1 Tat, which can continue to be produced under viral suppression in patients. This review will recap the behavioral evidence for HIV-1 Tat mediation of a potentiation of cocaine, opioid and alcohol reward, and explore the neurochemical dysfunction associated by Tat as potential mechanisms underlying changes in reward. Targeting rampant oxidative stress, inflammation and excitotoxicity associated with HIV and Tat protein exposure may prove useful in combating persistent substance abuse comorbid with HIV in the clinic.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
5
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
6
|
Nass SR, Hahn YK, McLane VD, Varshneya NB, Damaj MI, Knapp PE, Hauser KF. Chronic HIV-1 Tat exposure alters anterior cingulate cortico-basal ganglia-thalamocortical synaptic circuitry, associated behavioral control, and immune regulation in male mice. Brain Behav Immun Health 2020; 5:100077. [PMID: 33083793 PMCID: PMC7571616 DOI: 10.1016/j.bbih.2020.100077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
HIV-1 selectively disrupts neuronal integrity within specific brain regions, reflecting differences in viral tropism and/or the regional differences in the vulnerability of distinct neuronal subpopulations within the CNS. Deficits in prefrontal cortex (PFC)-mediated executive function and the resultant loss of behavioral control are a particularly debilitating consequence of neuroHIV. To explore how HIV-1 disrupts executive function, we investigated the effects of 48 h, 2 and/or 8 weeks of HIV-1 Tat exposure on behavioral control, synaptic connectivity, and neuroimmune function in the anterior cingulate cortex (ACC) and associated cortico-basal ganglia (BG)-thalamocortical circuitry in adult, Tat transgenic male mice. HIV-1 Tat exposure increased novelty-exploration in response to novel food, flavor, and environmental stimuli, suggesting that Tat triggers increased novelty-exploration in situations of competing motivation (e.g., drive to feed or explore vs. fear of novel, brightly lit open areas). Furthermore, Tat induced adaptability in response to an environmental stressor and pre-attentive filtering deficits. The behavioral insufficiencies coincided with decreases in the inhibitory pre- and post-synaptic proteins, synaptotagmin 2 and gephyrin, respectively, in the ACC, and alterations in specific pro- and anti-inflammatory cytokines out of 23 assayed. The interaction of Tat exposure and the resultant time-dependent, selective alterations in CCL4, CXCL1, IL-12p40, and IL-17A levels in the PFC predicted significant decreases in adaptability. Tat decreased dendritic spine density and cortical VGLUT1 inputs, while increasing IL-1β, IL-6, CCL5, and CCL11 in the striatum. Alternatively, IL-1α, CCL5, and IL-13 were decreased in the mediodorsal thalamus despite the absence of synaptic changes. Thus, HIV-1 Tat appears to uniquely and systematically disrupt immune regulation and the inhibitory and excitatory synaptic balance throughout the ACC-BG-thalamocortical circuitry resulting in a loss of behavioral control.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
| | - Virginia D. McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Neil B. Varshneya
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980059, Richmond, VA, 23298-0059, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980059, Richmond, VA, 23298-0059, USA
| |
Collapse
|
7
|
Ghura S, Gross R, Jordan-Sciutto K, Dubroff J, Schnoll R, Collman RG, Ashare RL. Bidirectional Associations among Nicotine and Tobacco Smoke, NeuroHIV, and Antiretroviral Therapy. J Neuroimmune Pharmacol 2019; 15:694-714. [PMID: 31834620 DOI: 10.1007/s11481-019-09897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
People living with HIV (PLWH) in the antiretroviral therapy (ART) era may lose more life-years to tobacco use than to HIV. Yet, smoking rates are more than twice as high among PLWH than the general population, contributing not just to mortality but to other adverse health outcomes, including neurocognitive deficits (neuroHIV). There is growing evidence that synergy with chronic inflammation and immune dysregulation that persists despite ART may be one mechanism by which tobacco smoking contributes to neuroHIV. This review will summarize the differential effects of nicotine vs tobacco smoking on inflammation in addition to the effects of tobacco smoke components on HIV disease progression. We will also discuss biomarkers of inflammation via neuroimaging as well as biomarkers of nicotine dependence (e.g., nicotine metabolite ratio). Tobacco smoking and nicotine may impact ART drug metabolism and conversely, certain ARTs may impact nicotine metabolism. Thus, we will review these bidirectional relationships and how they may contribute to neuroHIV and other adverse outcomes. We will also discuss the effects of tobacco use on the interaction between peripheral organs (lungs, heart, kidney) and subsequent CNS function in the context of HIV. Lastly, given the dramatic rise in the use of electronic nicotine delivery systems, we will discuss the implications of vaping on these processes. Despite the growing recognition of the importance of addressing tobacco use among PLWH, more research is necessary at both the preclinical and clinical level to disentangle the potentially synergistic effects of tobacco use, nicotine, HIV, cognition and immune dysregulation, as well as identify optimal approaches to reduce tobacco use. Graphical Abstract Proposed model of the relationships among HIV, ART, smoking, inflammation, and neurocognition. Solid lines represent relationships supported by evidence. Dashed lines represent relationships for which there is not enough evidence to make a conclusion. (a) HIV infection produces elevated levels of inflammation even among virally suppressed individuals. (b) HIV is associated with deficits in cognition function. (c) Smoking rates are higher among PLWH, compared to the general population. (d) The nicotine metabolite ratio (NMR) is associated with smoking behavior. (e) HIV and tobacco use are both associated with higher rates of psychiatric comorbidities, such as depression, and elevated levels of chronic stress. These factors may represent other mechanisms linking HIV and tobacco use. (f) The relationship between nicotine, tobacco smoking, and inflammation is complex, but it is well-established that smoking induces inflammation; the evidence for nicotine as anti-inflammatory is supported in some studies, but not others. (g) The relationship between tobacco use and neurocognition may differ for the effects of nicotine (acute nicotine use may have beneficial effects) vs. tobacco smoking (chronic use may impair cognition). (h) Elevated levels of inflammation may be associated with deficits in cognition. (i) PLWH may metabolize nicotine faster than those without HIV; the mechanism is not yet known and the finding needs validation in larger samples. We also hypothesize that if HIV-infection increases nicotine metabolism, then we should observe an attenuation effect once ART is initiated. (j) It is possible that the increase in NMR is due to ART effects on CYP2A6. (k) We hypothesize that faster nicotine metabolism may result in higher levels of inflammation since nicotine has anti-inflammatory properties.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Gross
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Dubroff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Schnoll
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ashare
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA.
| |
Collapse
|
8
|
Modulatory Effects of Nicotine on neuroHIV/neuroAIDS. J Neuroimmune Pharmacol 2018; 13:467-478. [PMID: 30215204 DOI: 10.1007/s11481-018-9806-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
Nicotine, one of the key active ingredients in tobacco smoke, exerts its effects via binding to nicotinic acetylcholine receptors (nAChRs). Although both negative and positive pharmacological effects of nicotine have been shown in numerous animals and human studies, its interaction with human immunodeficiency virus-1 (HIV-1) have not been fully elucidated. Even though combined anti-retroviral therapy (cART) limits the progression of HIV-1 to acquired immune deficiency syndrome (AIDS), HIV-associated neurocognitive disorders (HAND) remain prevalent. There is thus a compelling need to enhance our understanding of HAND-related neurologic dysfunction. Some biochemical pathways and physiological dysfunctions have been found to be shared by HAND and Alzheimer's (AD) or Parkinson's (PD) diseases, and nicotine may exert the same neuroprotection in HAND that has been observed in both AD and PD. In the past dozen years, various potential therapeutic effects of nicotine such as neuroprotection have been revealed in both in vivo and in vitro studies, including using HIV-1 transgenic (HIV-1Tg) rat model, which mimics HIV-infected patients receiving cART. In the current review, we describe recent progress in the prevalence of HIV/AIDS with and without cigarette smoking, some animal models for studying neural dysfunction associated with HIV-1 infection, elucidating the modulatory effects of cigarette smoking/nicotine on HIV/AIDS, the anti-inflammatory effects of nicotine, and the neuroprotective effects observed in HIV-1Tg rat model. Taken together, these findings suggest the following: although tobacco smoking does cause deleterious effects in both health and disease conditions such as HIV infection, nicotine, the significant component of tobacco smoke, has been shown to possess some neuroprotective effects in HIV patients, possible via its anti-inflammatory activities. It is therefore necessary to study nicotine's dual effects on neuroHIV/neuroAIDS in hope of better defining the potential medical uses of nicotine or its analogues, and to make them available in a purer and less dangerous form.
Collapse
|
9
|
Casas R, Muthusamy S, Wakim PG, Sinharay S, Lentz MR, Reid WC, Hammoud DA. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat. NEUROIMAGE-CLINICAL 2017; 17:659-666. [PMID: 29204344 PMCID: PMC5705794 DOI: 10.1016/j.nicl.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023]
Abstract
Introduction HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Materials and methods Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Results Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. Conclusion The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible. HIV infection is known to be associated with brain volume loss. HIV transgenic rats showed smaller brain volumes than wild type rats. Tg rats showed disproportionate loss of volume in the striatum compared to brain. Tg striatal volume loss along with genotype/age predict neurobehavioral deficits.
Collapse
Affiliation(s)
- Rafael Casas
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Siva Muthusamy
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Margaret R Lentz
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
10
|
Bruijnzeel AW. Reducing the Prevalence of Smoking: Policy Measures and Focusing on Specific Populations. Nicotine Tob Res 2017; 19:1003-1004. [PMID: 29054127 PMCID: PMC5896478 DOI: 10.1093/ntr/ntx154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 03/15/2024]
Affiliation(s)
- Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|