1
|
Saavedra LPJ, Francisco FA, Raposo SR, Cavalcante KVN, Buttow NC, Borges SC, Gomes RM, Campos HM, Gonçalves GD, Piovan S, Ghedini PC, Prates KV, Malta A, Matafome P, Mathias PCF, Almeida DL. Maternal AGE Precursors During Lactation Alters Offspring Glycemic Homeostasis Early in Life. BIOLOGY 2025; 14:160. [PMID: 40001928 PMCID: PMC11851399 DOI: 10.3390/biology14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Advanced glycation end-products (AGEs) are linked to the development of oxidative stress, insulin resistance, and impaired insulin secretion. Adverse early life conditions, such as exposure to AGEs and their precursors, may lead offspring to the development of metabolic dysfunction in adulthood. Nonetheless, the early impact in offspring metabolism by maternal intake of AGEs precursors during lactation is not known. OBJECTIVE Investigate early life metabolism of the offspring whose breastfeeding dams were orally exposed to AGEs precursor. METHODS Breastfeeding Wistar rats were daily treated with the glycation precursor methylglyoxal (MG-60 mg/kg of bodyweight) by gavage or saline 0.9% control (CO) until weaning. In vivo glycemic homeostasis in male offspring was assessed, followed by euthanasia for tissue sample collection for ex vivo assessments. RESULTS At weaning, MG offspring presented decreased bodyweight (p < 0.05), perigonadal (p < 0.01) and retroperitoneal (p < 0.01) fat. MG offspring presented decreased glucose tolerance (p < 0.05), lower basal insulinemia (p < 0.001), reduced high-glucose static insulin secretion (p < 0.05), and reduced pancreatic islet area (p < 0.05). Accordingly, MG offspring pancreas showed lower GSH and SOD activity (p < 0.05; p < 0.001, respectively) and increased MPO (p < 0.05) activity. CONCLUSIONS The consumption of AGE precursors by breastfeeding dams impaired offspring pancreatic function and glycemic homeostasis early in life.
Collapse
Affiliation(s)
- Lucas P. J. Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Flávio A. Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Scarlett R. Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Keilah V. N. Cavalcante
- Department of Physiological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (K.V.N.C.); (R.M.G.)
| | - Nilza C. Buttow
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Stephanie C. Borges
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Rodrigo M. Gomes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (K.V.N.C.); (R.M.G.)
| | - Hericles M. Campos
- Department of Pharmacology, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (H.M.C.); (P.C.G.)
| | - Gessica D. Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Paulo C. Ghedini
- Department of Pharmacology, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (H.M.C.); (P.C.G.)
| | - Kelly V. Prates
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Ananda Malta
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Paulo Matafome
- Institute of Physiology and Institute of Clinical and Biomedical Research, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-447 Coimbra, Portugal;
- Coimbra Health School, ESTeSC, Instituto Politécnico de Coimbra, 3000-447 Coimbra, Portugal
- Clinical Academic Center of Coimbra, 3000-447 Coimbra, Portugal
| | - Paulo C. F. Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| | - Douglas L. Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá 87020-900, PR, Brazil; (L.P.J.S.); (F.A.F.); (S.R.R.); (N.C.B.); (S.C.B.); (G.D.G.); (S.P.); (K.V.P.); (A.M.); (P.C.F.M.)
| |
Collapse
|
2
|
Amaro A, Sousa D, Sá-Rocha M, Ferreira-Júnior MD, Barra C, Monteiro T, Mathias P, Gomes RM, Baptista FI, Matafome P. Sex-specificities in offspring neurodevelopment and behaviour upon maternal glycation: Putative underlying neurometabolic and synaptic changes. Life Sci 2023; 321:121597. [PMID: 36948389 DOI: 10.1016/j.lfs.2023.121597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
AIM Lactation is an important programming window for metabolic disease and neuronal alterations later in life. We aimed to study the effect of maternal glycation during lactation on offspring neurodevelopment and behaviour, assessing possible sex differences and underpinning molecular players. METHODS Female Wistar rats were treated with the Glyoxalase-1 inhibitor S-p-Bromobenzylguthione cyclopentyl diester (BBGC 5 mg/kg). A control and vehicle group treated with dimethyl sulfoxide were considered. Male and female offspring were tested at infancy for neurodevelopment hallmarks. After weaning, triglycerides and total antioxidant capacity were measured in breast milk. At adolescence, offspring were tested for locomotor ability, anxious-like behaviour, and recognition memory. Metabolic parameters were assessed, and the hippocampus and prefrontal cortex were collected for molecular analysis. KEY FINDINGS Maternal glycation reduced triglycerides and total antioxidant capacity levels in breast milk. At infancy, both male and female offspring presented an anticipation on the achievement of neurodevelopmental milestones. At adolescence, male offspring exposed to maternal glycation presented hyperlocomotion, whereas offspring of both sexes presented a risk-taking phenotype, accompanied by GABAA receptor upregulation in the hippocampus. Females also demonstrated GABAA and PSD-95 changes in prefrontal cortex. Furthermore, lower levels of GLO1 and consequently higher accumulation of AGES were also observed in both male and female offspring hippocampus. SIGNIFICANCE Early exposure to maternal glycation induces changes in milk composition leading to neurodevelopment changes at infancy, and sex-specific behavioural and neurometabolic changes at adolescence, further evidencing that lactation period is a critical metabolic programming window and in sculpting behaviour.
Collapse
Affiliation(s)
- Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Mariana Sá-Rocha
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Marcos D Ferreira-Júnior
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
| | - Cátia Barra
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Tamaeh Monteiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Mathias
- Department of Physiological Sciences (DCiF), Institute of Biological Sciences, University Federal of Goiás (UFG), Goiânia, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
| |
Collapse
|
3
|
Ferreira AS, Galvão S, Gaspar R, Rodrigues-Neves AC, Ambrósio AF, Matafome P, Gomes CA, Baptista FI. Sex-specific changes in peripheral metabolism in a model of chronic anxiety induced by prenatal stress. Eur J Clin Invest 2021; 51:e13639. [PMID: 34120349 DOI: 10.1111/eci.13639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Prenatal stress is associated with increased susceptibility to psychiatric and metabolic disorders later in life. Prenatal exposure to stress mediators may have sex-dependent effects on offspring brain and metabolic function, promoting a sex-specific vulnerability to psychopathology and metabolic alterations at adulthood. In this work, the impact of prenatal stress on glucose homeostasis and peripheral metabolism of male and female offspring was investigated in a chronic anxiety animal model. METHODS Pregnant Wistar rats were injected with saline or glucocorticoid (dexamethasone: 1 mg/kg, subcutaneous) at gestational days 18 and 19. Male and female offspring weight was monitored, and anxious-like behaviour and peripheral insulin-sensitive tissues were analysed at adulthood. RESULTS At birth, females and males prenatally exposed to stress presented decreased body weight which remained low in females. At adulthood, a morphological disorganization of the Langerhans islets was observed in both sexes prenatally exposed to stress, yet not changes in insulin levels were detected. Also, prenatal stress increased glucose transporter 4 (GLUT-4) levels in female and male adipose tissues and decreased insulin receptor levels in the liver and skeleton muscle but only in females. CONCLUSIONS Exposure to stress mediators in critical periods of development negatively affects behaviour and metabolism. Prenatal stress programmes offspring peripheral metabolism in a sex-specific manner, emphasizing that the response to stress in critical periods of development may be sex-specific having each sex different vulnerabilities to psychiatric and metabolic disorders. Considering sex-specificities may provide critical clues for the design of preventive strategies and for early therapeutic intervention.
Collapse
Affiliation(s)
- Ana Sofia Ferreira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Sofia Galvão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Rita Gaspar
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana C Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António F Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
4
|
Marousez L, Sprenger N, De Lamballerie M, Jaramillo-Ortiz S, Tran L, Micours E, Gottrand F, Howsam M, Tessier FJ, Ley D, Lesage J. High hydrostatic pressure processing of human milk preserves milk oligosaccharides and avoids formation of Maillard reaction products. Clin Nutr 2021; 41:1-8. [PMID: 34861623 DOI: 10.1016/j.clnu.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the treatment of human milk. HHP preserves numerous milk bioactive components that are degraded by HoP, but no data are available for milk oligosaccharides (HMOs) or the formation of Maillard reaction products, which may be deleterious for preterm newborns. METHODS We evaluated the impact of HHP processing of human milk on 22 HMOs measured by liquid chromatography with fluorescence detection and on furosine, lactuloselysine, carboxymethyllysine (CML) and carboxyethyllysine (CEL) measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), four established indicators of the Maillard reaction. Human raw milk was sterilized by HoP (62.5 °C for 30 min) or processed by HHP (350 MPa at 38 °C). RESULTS Neither HHP nor HoP processing affected the concentration of HMOs, but HoP significantly increased furosine, lactuloselysine, CML and CEL levels in milk. CONCLUSIONS Our findings demonstrate that HPP treatment preserves HMOs and avoids formation of Maillard reaction products. Our study confirms and extends previous findings that HHP treatment of human milk provides safe milk, with fewer detrimental effects on the biochemically active milk components than HoP.
Collapse
Affiliation(s)
- Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | - Sarahi Jaramillo-Ortiz
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Léa Tran
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Edwina Micours
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000 Lille, France
| | - Michael Howsam
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Frederic J Tessier
- University of Lille, Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, F-59000 Lille, France
| | - Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology Hepatology and Nutrition, Department of Paediatrics, Jeanne de Flandre Children's Hospital, CHU Lille, F-59000 Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|