1
|
Nägele K, Bättig V, Gosert R, Walti CS, Prince SS, Halter J, Mathews R, Stühler C, Khanna N, Leuzinger K. Revealing the Unseen: Next-Generation Sequencing for Early Detection of Drug-Resistant Cytomegalovirus Variants Upon Letermovir Prophylaxis Failure. J Infect Dis 2025; 231:e177-e182. [PMID: 39210611 PMCID: PMC11793059 DOI: 10.1093/infdis/jiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In recipients of allogeneic hematopoietic cell transplant, prophylactic management strategies are essential for preventing cytomegalovirus (CMV) reactivation and associated disease. We report on a 63-year-old male patient with a D-/R+ CMV serostatus, who showed ongoing low-level CMV replication after hematopoietic cell transplant despite receiving letermovir prophylaxis. Sanger sequencing failed to detect drug resistance mutations (DRMs) until CMV pneumonitis developed, revealing a UL56-C325R DRM linked to high-level letermovir resistance. Retrospective analysis with next-generation sequencing revealed the DRM at a low frequency of 6% two weeks prior to detection by Sanger sequencing. This study highlights the importance of advanced next-generation sequencing methods for early detection of CMV DRMs, allowing for faster adjustments in antiviral treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jörg Halter
- Division of Hematology, University Hospital Basel
| | - Roby Mathews
- Division of Hematology, University Hospital Basel
| | - Claudia Stühler
- Infection Biology Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Nina Khanna
- Infectious Diseases and Hospital Epidemiology
- Infection Biology Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | | |
Collapse
|
2
|
Strizki JM, Diamond TL, Teal VL, Gilbert CL, Wang W, Stauffer N, Haber BA. Cytomegalovirus Antiviral Resistance Among Kidney Transplant Recipients in a Phase 3 Trial of Letermovir vs Valganciclovir Prophylaxis. J Infect Dis 2024; 230:e1287-e1298. [PMID: 38853607 PMCID: PMC11646593 DOI: 10.1093/infdis/jiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND In a phase 3 trial, letermovir was noninferior to valganciclovir for cytomegalovirus (CMV) disease prophylaxis in kidney transplant recipients who were CMV-seronegative and received kidneys from donors who were CMV-seropositive. Genotypic antiviral resistance and CMV glycoprotein B (gB) genotype are reported. METHODS Plasma samples with detectable CMV DNA were sequenced for the presence of known letermovir and valganciclovir resistance-associated amino acid substitutions (RASs) encoded by CMV gene regions (UL51, UL54, UL56, UL89, UL97) and prevalence of gB (UL55) genotypes (gB1-gB5). RESULTS Among participants, 84 of 292 (letermovir) and 93 of 297 (valganciclovir) had evaluable data for ≥1 gene target. Letermovir RASs were not detected in participants who received letermovir prophylaxis; however, 3 had valganciclovir RASs (pUL97). Twelve participants who received valganciclovir prophylaxis had valganciclovir RASs (pUL54, pUL97), and 1 who did not receive letermovir during the trial had letermovir RASs (pUL56). All but 1 participant responded to valganciclovir treatment irrespective of breakthrough CMV DNAemia or frequency of RASs. gB1 was the most frequent genotype across all participants and subgroups. CONCLUSIONS Letermovir RASs were not detected with letermovir prophylaxis, supporting a low risk for development of resistance in kidney transplant recipients who were CMV-seronegative and received kidneys from donors who were CMV-seropositive. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov, NCT03443869; EudraCT, 2017-001055-30.
Collapse
Affiliation(s)
- Julie M Strizki
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Tracy L Diamond
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Valerie L Teal
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Weiwen Wang
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Nicole Stauffer
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| | - Barbara A Haber
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
3
|
Esmann FVL, Zahid S, Moestrup KS, Normand N, Matthews C, Gustafsson F, Sengeløv H, Perch M, Schultz NA, Sørensen SS, Hansen JM, Christensen VB, Murray DD, Lundgren J, Crone CG, Helleberg M. Management of Post-transplant Infections in Collaborating Hospitals (MATCH) Programme: a prospective cohort of all transplant recipients at Copenhagen University Hospital-Rigshospitalet, Denmark. BMJ Open 2024; 14:e089966. [PMID: 39537569 PMCID: PMC11574425 DOI: 10.1136/bmjopen-2024-089966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
PURPOSE The Management of Post-transplant Infections in Collaborating Hospitals (MATCH) programme, initiated in 2011 and still ongoing, was created to 1) optimise the implementation of existing preventive strategies against viral infections in solid organ transplant (SOT) recipients and allogenic haematopoietic stem-cell transplant (HSCT) recipients and 2) advance research in the field of transplantation by collecting data from a multitude of sources. PARTICIPANTS All SOT and HSCT recipients at Copenhagen University Hospital, Rigshospitalet, are followed in MATCH. By February 2021, a total of 1192 HSCT recipients and 2039 SOT recipients have been included. Participants are followed life long. An automated electronic data capture system retrieves prospective data from nationwide registries. Data from the years prior to transplantation are also collected. FINDINGS TO DATE Data entries before and after transplantation include the following: biochemistry: 13 995 222 and 26 127 817; microbiology, cultures: 242 023 and 410 558; other microbiological analyses: 265 007 and 566 402; and pathology: 170 884 and 200 394. There are genomic data on 2431 transplant recipients, whole blood biobank samples from 1003 transplant recipients and faeces biobank samples from 207 HSCT recipients. Clinical data collected in MATCH have contributed to 50 scientific papers published in peer-reviewed journals and have demonstrated success in reducing cytomegalovirus disease in SOT recipients. The programme has established international collaborations with the Swiss Transplant Cohort Study and the lung transplant cohort at Toronto General Hospital. FUTURE PLANS Enrolment into MATCH is ongoing with no planned end date for enrolment or follow-up. MATCH will continue to provide high-quality data on transplant recipients and expand and strengthen international collaborations.
Collapse
Affiliation(s)
| | - Sadaf Zahid
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Kobenhavn, Denmark
| | | | - Nick Normand
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Kobenhavn, Denmark
| | - Charlotte Matthews
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Kobenhavn, Denmark
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Kobenhavn, Denmark
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Region Hovedstaden, Denmark
| | - Henrik Sengeløv
- Department of Hematology, Rigshospitalet, Kobenhavn, Denmark
- University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
| | - Michael Perch
- Department of Cardiology, Rigshospitalet, Kobenhavn, Denmark
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Region Hovedstaden, Denmark
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Kobenhavn, Denmark
| | - Søren Schwartz Sørensen
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Region Hovedstaden, Denmark
- Department of Nephrology, Rigshospitalet, Kobenhavn, Denmark
| | | | | | - Daniel D Murray
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Kobenhavn, Denmark
| | - J Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Kobenhavn, Denmark
- University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Denmark
| | - Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Kobenhavn, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, Kobenhavn, Denmark
- Department of Infectious Diseases, Rigshospitalet, Kobenhavn, Denmark
| |
Collapse
|
4
|
Pham JH, Razonable RR. Management of resistant and refractory cytomegalovirus infections after transplantation. Expert Rev Anti Infect Ther 2024; 22:855-866. [PMID: 39225411 DOI: 10.1080/14787210.2024.2399647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a classic opportunistic infection in transplant recipients. Treatment-refractory CMV infections are of concern, with growing identification of strains that have developed genetic mutations which confer resistance to standard antiviral therapy. Resistant and refractory CMV infections are associated with worse patient outcomes, prolonged hospitalization, and increased healthcare costs. AREAS COVERED This article provides a comprehensive practical overview of resistant and refractory CMV infections in transplant recipients. We review the updated definitions for these infections, antiviral pharmacology, mechanisms of drug resistance, diagnostic workup, management strategies, and host-related factors including immune optimization. EXPERT OPINION Resistant and refractory CMV infections are a significant contributor to post-transplant morbidity and mortality. This is likely the result of a combination of prolonged antiviral exposure and active viral replication in the setting of intensive pharmacologic immunosuppression. Successful control of resistant and refractory infections in transplant recipients requires a combination of immunomodulatory optimization and appropriate antiviral drug choice with sufficient treatment duration.
Collapse
Affiliation(s)
- Justin H Pham
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Abstract
Cytomegalovirus (CMV) is one of the most common infections occurring after solid organ transplantation. This high burden of disease, which incurs sizeable morbidity, may be worsening with the proportion of high-risk D+/R- solid organ transplantation recipients increasing in some regions globally. Cohort studies continue to support either universal prophylaxis or preemptive therapy as effective prevention strategies. Letermovir prophylaxis was noninferior to valganciclovir in adult high-risk D+/R- kidney transplant recipients with fewer drug-related adverse events in a recent clinical trial and has now been approved for such use in some regions. Maribavir preemptive therapy failed to demonstrate noninferiority when compared with valganciclovir in hematopoietic stem cell transplant recipients but looked promising for safety. Donor matching could be useful in prevention CMV disease with a survival advantage demonstrated in seronegative recipients waiting up to 30 mo for a seronegative kidney. Immune-guided prophylaxis resulted in fewer CMV infection episodes in lung transplant recipients when compared with fixed-duration prophylaxis in a recent clinical trial. For treatment of refractory or resistant CMV infection, maribavir was more efficacious and better tolerated when compared with investigator-initiated therapy in its registration trial for this condition. Further research regarding best treatment and prophylaxis of resistant or refractory CMV infection is needed to reflect best clinical practice choices. Optimal use of immune globulin or CMV-specific T cells for prevention or treatment of CMV disease remains undefined. Standardized definitions for the design of CMV clinical trials have been developed. In this review, we highlight recent updates in the field from data published since 2018.
Collapse
Affiliation(s)
- Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, QLD, Australia
| | - Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Mallory MA, Hymas WC, Simmon KE, Pyne MT, Stevenson JB, Barker AP, Hillyard DR, Hanson KE. Development and validation of a next-generation sequencing assay with open-access analysis software for detecting resistance-associated mutations in CMV. J Clin Microbiol 2023; 61:e0082923. [PMID: 38092673 PMCID: PMC10729743 DOI: 10.1128/jcm.00829-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 12/20/2023] Open
Abstract
Cytomegalovirus (CMV) resistance testing by targeted next-generation sequencing (NGS) allows for the simultaneous analysis of multiple genes. We developed and validated an amplicon-based Ion Torrent NGS assay to detect CMV resistance mutations in UL27, UL54, UL56, and UL97 and compared the results to standard Sanger sequencing. NGS primers were designed to generate 83 overlapping amplicons of four CMV genes (~10 kb encompassing 138 mutation sites). An open-access software plugin was developed to perform read alignment, call variants, and interpret drug resistance. Plasmids were tested to determine NGS error rate and minor variant limit of detection. NGS limit of detection was determined using the CMV WHO International Standard and quantified clinical specimens. Reproducibility was also assessed. After establishing quality control metrics, 185 patient specimens previously tested using Sanger were reanalyzed by NGS. The NGS assay had a low error rate (<0.05%) and high accuracy (95%) for detecting CMV-associated resistance mutations present at ≥5% in contrived mixed populations. Mutation sites were reproducibly sequenced with 40× coverage when plasma viral loads were ≥2.6 log IU/mL. NGS detected the same resistance-associated mutations identified by Sanger in 68/69 (98.6%) specimens. In 16 specimens, NGS detected 18 resistance mutations that Sanger failed to detect; 14 were low-frequency variants (<20%), and six would have changed the drug resistance interpretation. The NGS assay showed excellent agreement with Sanger and generated high-quality sequence from low viral load specimens. Additionally, the higher resolution and analytic sensitivity of NGS potentially enables earlier detection of antiviral resistance.
Collapse
Affiliation(s)
- Melanie A. Mallory
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Weston C. Hymas
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Keith E. Simmon
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Michael T. Pyne
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Jeffery B. Stevenson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Adam P. Barker
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - David R. Hillyard
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly E. Hanson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Sun YQ, Ma R, Huang XJ. Optimizing the treatment of cytomegalovirus infection in allo-HSCT recipients. Expert Rev Clin Immunol 2023; 19:227-235. [PMID: 36541485 DOI: 10.1080/1744666x.2023.2161510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection continues to negatively impact the prognosis after allogeneic hematopoietic stem cell transplantation (allo-HSCT), even with active monitoring and preemptive strategies. Recent progress in pharmacology, immunotherapy, and vaccines has improved the strategy of CMV management. AREAS COVERED We summarized recent advances in managing CMV infection post allo-HSCT, including diagnosis, prophylaxis, and treatment. In this review, we mainly focused on approaches that have optimized or might optimize the management of CMV infection after allo-HSCT. EXPERT OPINION In our opinion, optimized management covers aspects including the serial monitoring of CMV-DNA and CMI, an accurate diagnosis, effective prophylaxis, and a rational preemptive therapy integrating antiviral drugs and cell therapies. Strategies based on the understanding of CMV pathogenesis and CMV-related immune reconstitution after allo-HSCT will be a direction in future studies.
Collapse
Affiliation(s)
- Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Rui Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|