1
|
Mataracı-Kara E, Özer B, Yilmaz M, Özbek-Çelik B. An assessment of cefiderocol's synergistic effects with eravacycline, colistin, meropenem, levofloxacin, ceftazidime/avibactam, and tobramycin against carbapenem-resistant and -susceptible Pseudomonasaeruginosa. Microb Pathog 2025; 204:107560. [PMID: 40210140 DOI: 10.1016/j.micpath.2025.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVES This research examines the combined in vitro effectiveness of cefiderocol with other antibiotics against carbapenem-resistant and -susceptible Pseudomonas aeruginosa obtained from Intensive Care Units. METHODS Forty unique P. aeruginosa isolates were evaluated for their minimum inhibitory concentrations (MICs) using broth microdilution. All the isolates were evaluated for carbapenemase resistance genes. The bactericidal and synergistic effects of cefiderocol, alone or in conjunction with other antimicrobials, were assessed using time-kill curve experiments. RESULTS Colistin had the lowest MIC50/MIC90 value of 1/2 mg/L, with cefiderocol following at 0.5/4 mg/L against the tested strains. Cefiderocol, levofloxacin, tobramycin, and meropenem showed bactericidal activity against various isolates. In carbapemase-producing P. aeruginosa strains, almost half of them were carrying blaVIM. Moreover, the most effective synergistic interactions were seen with combinations of cefiderocol and eravacycline, cefiderocol and meropenem, and cefiderocol and levofloxacin against four out of eight strains at 1xMIC concentrations after 24 h. Additionally, we observed synergistic effects when cefiderocol was used with colistin, tobramycin, and ceftazidime/avibactam against three of the eight isolates. Antagonism against the analyzed P. aeruginosa strains was not found. CONCLUSION The findings of this study indicate that combining cefiderocol enhances its synergistic efficacy against both carbapenem-resistant and susceptible P. aeruginosa strains. This suggests that combination therapy could serve as a potential alternative for treating resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy University, 34116, Beyazit-Istanbul, Turkey.
| | - Bekir Özer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy University, 34116, Beyazit-Istanbul, Turkey.
| | - Mesut Yilmaz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Istanbul Medipol University, 34214, Istanbul, Turkey.
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy University, 34116, Beyazit-Istanbul, Turkey.
| |
Collapse
|
2
|
Karaiskos I, Galani I, Daikos GL, Giamarellou H. Breaking Through Resistance: A Comparative Review of New Beta-Lactamase Inhibitors (Avibactam, Vaborbactam, Relebactam) Against Multidrug-Resistant Superbugs. Antibiotics (Basel) 2025; 14:528. [PMID: 40426594 PMCID: PMC12108312 DOI: 10.3390/antibiotics14050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
The introduction of new β-lactam-β-lactamase inhibitors (BLBLIs), such as ceftazidime/avibactam, meropenem/vaborbactam, and imipenem/cilastatin/relebactam, expands our therapeutic options against carbapenem-resistant Gram-negative bacteria, including those pathogens for which therapeutic options are limited. These new combinations are active against ESBL-, AmpC-, and KPC-producing Enterobacterales, with the exception of ceftazidime/avibactam, which is active in vitro against OXA-48. However, one drawback that must be taken seriously by the clinician is that they are ineffective against metallo-β-lactamases as well as Acinetobacter baumannii. The recent introduction of aztreonam/avibactam marks a significant advancement in our therapeutic armamentarium against metallo-β-lactamase-producing pathogens. The question to be answered is whether there is a preferred, newer BLBLI combination for the treatment of KPC-producing Enterobacterales infections. This review provides a thorough analysis of the similarities and differences between these new combinations to identify the most effective treatment options. The present review aims to provide clinicians with a detailed understanding of each BLBLI treatment option to guide the optimal use of these new agents for the effective treatment of difficult infections caused by carbapenemase-producing Enterobacterales infections. This review is based on literature retrieved from PubMed, Scopus, Web of Science, and the Cochrane Library.
Collapse
Affiliation(s)
- Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 15123 Athens, Greece;
| | - Irene Galani
- Infectious Diseases Laboratory, Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - George L. Daikos
- Second Department of Internal Medicine, Mitera General Hospital, 15123 Athens, Greece;
| | - Helen Giamarellou
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 15123 Athens, Greece;
| |
Collapse
|
3
|
Machuca I, Dominguez A, Amaya R, Arjona C, Gracia-Ahufinger I, Carralon M, Giron R, Gea I, De Benito N, Martin A, Galan F, Martinez JA, Iglesias R, Revuelto J, Caston JJ, Cano A, Ruiz-Arabi E, Martínez-Martínez L, Torre-Cisneros J. Real-World Experience of Imipenem-Relebactam Treatment as Salvage Therapy in Difficult-to-Treat Pseudomonas aeruginosa Infections (IMRECOR Study). Infect Dis Ther 2025; 14:283-292. [PMID: 39612160 PMCID: PMC11782751 DOI: 10.1007/s40121-024-01077-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION Difficult-to-treat-resistant (DTR) infections caused by Pseudomonas aeruginosa represent a global public health threat, prioritizing the search and development of new antibiotics for this microorganism. METHODS We present the real-life experience of the compassionate use of imipenem/cilastatin/relebactam in a descriptive study involving 14 patients with DTR-P. aeruginosa infection and limited treatment options. RESULTS The primary source of infection was skin and soft tissue infection, 57.1% (8/14), followed by respiratory infection-pneumonia, 28.6% (4/14). At the onset of infection, 71.4% (10/14) of patients were in the intensive care unit (ICU). All our patients had a Charlson Score of ≥ 3. Septic shock was observed in 64.3% (9/14) of patients. The median treatment duration was 15 days, and no patient experienced an adverse event that required treatment interruption. All-cause 30-day mortality was observed in 42.9% of cases (6/14), while clinical efficacy and microbiological success were observed in 64.3% (9/14). CONCLUSIONS Imipenem/cilastatin/relebactam may represent a treatment option for patients with DTR-P. aeruginosa infections, which should be validated in prospective clinical trials.
Collapse
Affiliation(s)
- Isabel Machuca
- Infectious Diseases Service, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Arantxa Dominguez
- Anesthesiology Service, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Amaya
- Critical Care Service, Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Cristina Arjona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Irene Gracia-Ahufinger
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Critical Care Service, Hospital Puerta del Mar, Cádiz, Barcelona, Spain
| | | | - Rosa Giron
- Pneumology Service, Hospital La Princesa, Madrid, Spain
| | - Isabel Gea
- Infectious Diseases Service, Hospital de Jaén, Jaén, Spain
| | - Natividad De Benito
- Infectious Diseases Service, Hospital Santa Creu y Sant Pau, Barcelona, Spain
| | - Andres Martin
- Infectious Diseases Service, Hospital Puerta del Mar, Cádiz, Spain
| | - Fatima Galan
- Microbiology Unit, Hospital Puerta del Mar, Cádiz, Spain
| | | | - Rayden Iglesias
- Critical Care Service, Hospital de Granollers, Barcelona, Spain
| | - Jaume Revuelto
- Critical Care Service, Hospital Puerta del Mar, Cádiz, Barcelona, Spain
| | - Juan Jose Caston
- Infectious Diseases Service, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Angela Cano
- Infectious Diseases Service, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Ruiz-Arabi
- Infectious Diseases Service, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Martínez-Martínez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain.
- Department of Agricultural Chemistry, Soil Science and Microbiology, University of Córdoba, Avda. Menéndez Pidal S/N, 14004, Córdoba, Spain.
| | - Julian Torre-Cisneros
- Infectious Diseases Service, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Córdoba, Spain
| |
Collapse
|
4
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024; 22:1055-1071. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
5
|
Laffont-Lozes P, Naciri T, Pantel A, Martin A, Pruvot-Occean AS, Haignere V, Loubet P, Sotto A, Larcher R. First case report of a vertebral osteomyelitis caused by carbapenem-resistant Enterobacter cloacae treated with imipenem/cilastatin/relebactam prolonged infusion then meropenem/vaborbactam in continuous infusion. Front Pharmacol 2024; 15:1347306. [PMID: 39545060 PMCID: PMC11561750 DOI: 10.3389/fphar.2024.1347306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Bone and joint infections (BJIs) caused by multidrug-resistant bacteria are becoming more frequent. However, data on the use of novel β-lactam/β-lactamase inhibitors, such as imipenem/cilastatin/relebactam (I-R) and meropenem/vaborbactam (MVB), to treat BJIs is lacking. Furthermore, prolonged infusions of these β-lactams should theoretically optimize pharmacokinetic/pharmacodynamics target in these indications, but there are currently no reports on this type of infusions, especially in the setting of BJI. Case Presentation We report a case of a vertebral osteomyelitis caused by carbapenem-resistant Enterobacter cloacae successfully treated with extended-infusion of I-R (1.25 g q6h over 2 h), then with continuous infusion of MVB (2 g q4h as over 4 h). Therapeutic drug monitoring confirmed that extended-infusion of I-R and continuous infusion of MVB achieved serum concentrations up to 12 mg/L of imipenem and 19 mg/L of meropenem, respectively. Conclusion The favourable outcome of this patient treated for a vertebral osteomyelitis caused by carbapenem-resistant E. cloacae suggest that extended- and continuous infusions of I-R and MVB, are promising regimens for treatment of BJIs caused by carbapenem-resistant Enterobacterales.
Collapse
Affiliation(s)
| | - Tayma Naciri
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, NîmesFrance
- VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Montpellier, France
| | - Aurélie Martin
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
| | | | - Vincent Haignere
- Department of Orthopaedic Surgery and Traumatology, Nimes University Hospital, Nîmes, France
| | - Paul Loubet
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
- VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Montpellier, France
| | - Albert Sotto
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
- VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Montpellier, France
| | - Romaric Larcher
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nîmes, France
- PhyMedExp (Physiology and Experimental Medicine), INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Leanza C, Mascellino MT, Volpicelli L, Covino S, Falletta A, Cancelli F, Franchi C, Carnevalini M, Mastroianni CM, Oliva A. Real-world use of imipenem/cilastatin/relebactam for the treatment of KPC-producing Klebsiella pneumoniae complex and difficult-to-treat resistance (DTR) Pseudomonas aeruginosa infections: a single-center preliminary experience. Front Microbiol 2024; 15:1432296. [PMID: 39081883 PMCID: PMC11286388 DOI: 10.3389/fmicb.2024.1432296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Real-life experience with imipenem/cilastatin/relebactam (IMI/REL) for the treatment of KPC-producing Klebsiella pneumoniae complex (KPC-Kp) and difficult-to-treat resistance (DTR) Pseudomonas aeruginosa (DTR-PA) infections is herein described. Methods Adult patients with KPC-Kp or DTR-PA infections who received ≥48 h of IMI/REL were included. Clinical and microbiological outcomes were retrieved through the medical records. Primary outcome was clinical cure. Secondary outcomes included mortality from infection onset and adverse effects attributable to IMI/REL. Results We included 10 patients with different infections caused by DTR-PA (n = 4), KPC-Kp [n = 5, of which 3 ceftazidime/avibactam-resistant (CTV-R KPC-Kp), 2 CTV susceptible (CTV-S KPC-Kp)] or both DTR-PA/KPC-Kp (n = 1) successfully treated with IMI/REL: 3 hospital-acquired pneumonia, 1 ventilator-associated pneumonia, 2 skin and soft tissue infections, 1 osteomyelitis, 2 bloodstream infections, 1 complicated urinary tract infection. Clinical cure was achieved in all cases. No patients died and no side effect were reported. Discussion We reported the preliminary real-life experience on the successful and safe use of IMI/REL for the treatment of KPC-Kp or DTR-PA complicated infections, including pneumonia and bone infections.
Collapse
Affiliation(s)
- Cristiana Leanza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Mascellino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Volpicelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sara Covino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antonio Falletta
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesca Cancelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | | | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Fondazione Eleonora Lorillard Spencer Cenci, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Shields RK, Yücel E, Turzhitsky V, Merchant S, Min JS, Watanabe AH. Real-world evaluation of imipenem/cilastatin/relebactam across US medical centres. J Glob Antimicrob Resist 2024; 37:190-194. [PMID: 38588973 DOI: 10.1016/j.jgar.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
We assessed 160 patients who received imipenem/cilastatin/relebactam for ≥2 days. At treatment initiation, the median Charlson Comorbidity Index was 5, 45% were in the intensive care unit, and 19% required vasopressor support. The in-hospital mortality rate was 24%. These data advance our understanding of real-world indications and outcomes of imipenem/cilastatin/relebactam use.
Collapse
Affiliation(s)
- Ryan K Shields
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
8
|
Sansone P, Giaccari LG, Di Flumeri G, Pace MC, Pota V, Coppolino F, Brunetti S, Aurilio C. Imipenem/Cilastatin/Relebactam for Complicated Infections: A Real-World Evidence. Life (Basel) 2024; 14:614. [PMID: 38792635 PMCID: PMC11122335 DOI: 10.3390/life14050614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Infections caused by multidrug-resistant (MDR) bacteria represent one of the major global public health problems of the 21st century. Beta-lactam antibacterial agents are commonly used to treat infections due to Gram-negative pathogens. New β-lactam/β-lactamase inhibitor combinations are urgently needed. Combining relebactam (REL) with imipenem (IMI) and cilastatin (CS) can restore its activity against many imipenem-nonsusceptible Gram-negative pathogens. (2) Methods: we performed a systematic review of the studies reporting on the use of in vivo REAL/IPM/CS. (3) Results: A total of eight studies were included in this review. The primary diagnosis was as follows: complicated urinary tract infection (n = 234), complicated intra-abdominal infections (n = 220), hospital-acquired pneumonia (n = 276), and ventilator-associated pneumonia (n = 157). Patients with normal renal function received REL/IPM/CS (250 mg/500 mg/500 mg). The most frequently reported AEs occurring in patients treated with imipenem/cilastatin plus REL/IPM/CS were nausea (11.5%), diarrhea (9.8%), vomiting (9.8%), and infusion site disorders (4.0%). Treatment outcomes in these high-risk patients receiving REL/IPM/CS were generally favorable. A total of 70.6% of patients treated with REL/IPM/CS reported a favorable clinical response at follow-up. (4) Conclusions: this review indicates that REL/IPM/CS is active against important MDR Gram-negative organisms.
Collapse
Affiliation(s)
- Pasquale Sansone
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (P.S.); (L.G.G.); (M.C.P.); (V.P.); (F.C.); (S.B.)
| | - Luca Gregorio Giaccari
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (P.S.); (L.G.G.); (M.C.P.); (V.P.); (F.C.); (S.B.)
| | - Giusy Di Flumeri
- UOC Emerging Infectious Disease with High Contagiousness, AORN Ospedali dei Colli P.O. C Cotugno, 80131 Naples, Italy;
| | - Maria Caterina Pace
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (P.S.); (L.G.G.); (M.C.P.); (V.P.); (F.C.); (S.B.)
| | - Vincenzo Pota
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (P.S.); (L.G.G.); (M.C.P.); (V.P.); (F.C.); (S.B.)
| | - Francesco Coppolino
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (P.S.); (L.G.G.); (M.C.P.); (V.P.); (F.C.); (S.B.)
| | - Simona Brunetti
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (P.S.); (L.G.G.); (M.C.P.); (V.P.); (F.C.); (S.B.)
| | - Caterina Aurilio
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (P.S.); (L.G.G.); (M.C.P.); (V.P.); (F.C.); (S.B.)
| |
Collapse
|
9
|
Dettori S, Portunato F, Vena A, Giacobbe DR, Bassetti M. Severe infections caused by difficult-to-treat Gram-negative bacteria. Curr Opin Crit Care 2023; 29:438-445. [PMID: 37641512 PMCID: PMC10919274 DOI: 10.1097/mcc.0000000000001074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance (AMR) in Gram-negative bacteria (GNB) poses a significant global health concern, contributing to increased infections, mortality rates, and healthcare costs. This review discusses the main clinical manifestations, therapeutic options, and recent findings in managing antibiotic-resistant GNB, with a focus on difficult-to-treat infections. RECENT FINDINGS Difficult-to-treat resistance (DTR) is a novel classification that identifies GNB exhibiting intermediate or resistant phenotypes to first-line agents in the carbapenem, beta-lactam, and fluoroquinolone categories. The main pathogens implicated in severe infections include DTR Enterobacterales, DTR Pseudomonas aeruginosa , and DTR Acinetobacter baumannii. Although the clinical implications of DTR strains are still under investigation, certain studies have linked them to prolonged hospital stays and poor patient outcomes. SUMMARY Severe infections caused by DTR-GNB pose a formidable challenge for healthcare providers and represent a growing global health issue. The proper administration and optimization of novel antibiotics at our disposal are of paramount importance for combating bacterial resistance and improving patient prognosis.
Collapse
Affiliation(s)
- Silvia Dettori
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Federica Portunato
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Montero MM, Horcajada JP. Multidrug-resistant Pseudomonas aeruginosa: A pathogen with challenging clinical management. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2023; 41:451-453. [PMID: 37838452 DOI: 10.1016/j.eimce.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 10/16/2023]
Affiliation(s)
- Maria M Montero
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra Barcelona, Barcelona, Spain; CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002), Institute of Health Carlos III, Madrid, Spain
| | - Juan P Horcajada
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra Barcelona, Barcelona, Spain; CIBER of Infectious Diseases (CIBERINFEC CB21/13/00002), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Martin-Loeches I, Shorr AF, Kollef MH, Du J, Losada MC, Paschke A, DeRyke CA, Wong M, Jensen EH, Chen LF. Participant- and Disease-Related Factors as Independent Predictors of Treatment Outcomes in the RESTORE-IMI 2 Clinical Trial: A Multivariable Regression Analysis. Open Forum Infect Dis 2023; 10:ofad225. [PMID: 37383243 PMCID: PMC10297016 DOI: 10.1093/ofid/ofad225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
Background In the RESTORE-IMI 2 trial, imipenem/cilastatin/relebactam (IMI/REL) was noninferior to piperacillin/tazobactam in treating hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia. This post hoc analysis was conducted to determine independent predictors of efficacy outcomes in the RESTORE-IMI 2 trial, to assist in treatment decision making. Methods A stepwise multivariable regression analysis was conducted to identify variables that were independently associated with day 28 all-cause mortality (ACM), favorable clinical response at early follow-up (EFU), and favorable microbiologic response at end of treatment (EOT). The analysis accounted for the number of baseline infecting pathogens and in vitro susceptibility to randomized treatment. Results Vasopressor use, renal impairment, bacteremia at baseline, and Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II scores ≥15 were associated with a greater risk of day 28 ACM. A favorable clinical response at EFU was associated with normal renal function, an APACHE II score <15, no vasopressor use, and no bacteremia at baseline. At EOT, a favorable microbiologic response was associated with IMI/REL treatment, normal renal function, no vasopressor use, nonventilated pneumonia at baseline, intensive care unit admission at randomization, monomicrobial infections at baseline, and absence of Acinetobacter calcoaceticus-baumannii complex at baseline. These factors remained significant after accounting for polymicrobial infection and in vitro susceptibility to assigned treatment. Conclusions This analysis, which accounted for baseline pathogen susceptibility, validated well-recognized patient- and disease-related factors as independent predictors of clinical outcomes. These results lend further support to the noninferiority of IMI/REL to piperacillin/tazobactam and suggests that pathogen eradication may be more likely with IMI/REL. Clinical Trials Registration NCT02493764.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization, St James's University Hospital, Trinity Centre for Health Sciences, Dublin, Ireland
| | - Andrew F Shorr
- Section of Pulmonary, Critical Care, and Respiratory Services, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jiejun Du
- Merck & Co, Inc, Rahway, New Jersey, USA
| | | | | | - C Andrew DeRyke
- Correspondence: C. Andrew DeRyke, Pharm. D, Merck & Co, Inc, 351 N Sumneytown Pike, PO Box 1000 (UG1CD-70), North Wales, PA 19454, USA ()
| | | | | | | |
Collapse
|
12
|
Karvouniaris M, Almyroudi MP, Abdul-Aziz MH, Blot S, Paramythiotou E, Tsigou E, Koulenti D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:761. [PMID: 37107124 PMCID: PMC10135111 DOI: 10.3390/antibiotics12040761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Gram-negative bacterial resistance to antimicrobials has had an exponential increase at a global level during the last decades and represent an everyday challenge, especially for the hospital practice of our era. Concerted efforts from the researchers and the industry have recently provided several novel promising antimicrobials, resilient to various bacterial resistance mechanisms. There are new antimicrobials that became commercially available during the last five years, namely, cefiderocol, imipenem-cilastatin-relebactam, eravacycline, omadacycline, and plazomicin. Furthermore, other agents are in advanced development, having reached phase 3 clinical trials, namely, aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-zidebactam, sulopenem, tebipenem, and benapenem. In this present review, we critically discuss the characteristics of the above-mentioned antimicrobials, their pharmacokinetic/pharmacodynamic properties and the current clinical data.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, 546 36 Thessaloniki, Greece;
| | | | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Evdoxia Tsigou
- Intensive Care Department, ‘Aghioi Anargyroi’ Hospital of Kifissia, 145 64 Athens, Greece;
| | - Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Second Critical Care Department, Attikon University Hospital, 124 62 Athens, Greece;
| |
Collapse
|
13
|
Rogers TM, Kline EG, Griffith MP, Jones CE, Rubio AM, Squires KM, Shields RK. Impact of ompk36 genotype and KPC subtype on the in vitro activity of ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam against KPC-producing K. pneumoniae clinical isolates. JAC Antimicrob Resist 2023; 5:dlad022. [PMID: 36968951 PMCID: PMC10035640 DOI: 10.1093/jacamr/dlad022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
Objectives The availability of new β-lactam/β-lactamase inhibitors ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam have redefined contemporary treatment of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) infections. We aimed to characterize and contrast the in vitro activity of these agents against genetically diverse KPC-Kp clinical isolates. Methods We analysed genomes of 104 non-consecutive KPC-Kp isolates and compared the in vitro antibiotic activity by KPC subtype and ompK36 genotype. MICs were determined in triplicate by CLSI methods. Twenty representative isolates were selected for time-kill analyses against physiological steady-state and trough concentrations, as well as 4× MIC for each agent. Results Fifty-eight percent and 42% of isolates harboured KPC-2 and KPC-3, respectively. OmpK36 mutations were more common among KPC-2- compared with KPC-3-producing Kp (P < 0.0001); mutations were classified as IS5 insertion, glycine-aspartic acid insertion at position 134 (GD duplication) and other mutations. Compared to isolates with WT ompK36, ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam MICs were elevated for isolates with IS5 by 2-, 4- and 16-fold, respectively (P < 0.05 for each). Against isolates with GD duplication, imipenem/relebactam and meropenem/vaborbactam MICs were increased, but ceftazidime/avibactam MICs were not. In time-kill studies, ceftazidime/avibactam-mediated killing correlated with ceftazidime/avibactam MICs, and did not vary across ompK36 genotypes. Imipenem/relebactam was not bactericidal against any isolate at trough concentrations. At steady-state imipenem/relebactam concentrations, regrowth occurred more commonly for isolates with IS5 mutations. Log-kills were lower in the presence of meropenem/vaborbactam for isolates with GD duplication compared with IS5 mutations. Conclusions Our investigation identified key genotypes that attenuate, to varying degrees, the in vitro activity for each of the new β-lactam/β-lactamase inhibitors. Additional studies are needed to translate the importance of these observations into clinical practice.
Collapse
Affiliation(s)
- Tara M Rogers
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ellen G Kline
- Department of Medicine, University of Pittsburgh, 3601 Fifth Avenue, Falk Medical Building, Suite 5B, Pittsburgh, PA 15213, USA
| | - Marissa P Griffith
- Department of Medicine, University of Pittsburgh, 3601 Fifth Avenue, Falk Medical Building, Suite 5B, Pittsburgh, PA 15213, USA
| | - Chelsea E Jones
- Department of Medicine, University of Pittsburgh, 3601 Fifth Avenue, Falk Medical Building, Suite 5B, Pittsburgh, PA 15213, USA
| | - Abigail M Rubio
- Department of Medicine, University of Pittsburgh, 3601 Fifth Avenue, Falk Medical Building, Suite 5B, Pittsburgh, PA 15213, USA
| | - Kevin M Squires
- Department of Medicine, University of Pittsburgh, 3601 Fifth Avenue, Falk Medical Building, Suite 5B, Pittsburgh, PA 15213, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, 3601 Fifth Avenue, Falk Medical Building, Suite 5B, Pittsburgh, PA 15213, USA
- Center for Innovative Antimicrobial Therapy, University of Pittsburgh, Pittsburgh, PA, USA
- Antibiotic Management Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Gatti M, Pea F. Jumping into the future: overcoming pharmacokinetic/pharmacodynamic hurdles to optimize the treatment of severe difficult to treat-Gram-negative infections with novel beta-lactams. Expert Rev Anti Infect Ther 2023; 21:149-166. [PMID: 36655779 DOI: 10.1080/14787210.2023.2169131] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The choice of best therapeutic strategy for difficult-to-treat resistance (DTR) Gram-negative infections currently represents an unmet clinical need. AREAS COVERED This review provides a critical reappraisal of real-world evidence supporting the role of pharmacokinetic/pharmacodynamic (PK/PD) optimization of novel beta-lactams in the management of DTR Gram-negative infections. The aim was to focus on prolonged and/or continuous infusion administration, penetration rates into deep-seated infections, and maximization of PK/PD targets in special renal patient populations. Retrieved findings were applied to the three most critical clinical scenarios of Gram-negative resistance phenotypes (i.e. carbapenem-resistant Enterobacterales; difficult-to-treat resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii). EXPERT OPINION Several studies supported the role of PK/PD optimization of beta-lactams in the management of DTR Gram-negative infections for both maximizing clinical efficacy and preventing resistance emergence. Optimizing antimicrobial therapy with novel beta-lactams based on the so called 'antimicrobial therapy puzzle' PK/PD concepts may represent a definitive jump into the future toward a personalized patient management of DTR Gram negative infections. Establishing a dedicated and coordinated multidisciplinary team and implementing a real-time TDM-guided personalized antimicrobial exposure optimization of novel beta-lactams based on expert clinical pharmacological interpretation, could represent crucial cornerstones for the proper management of DTR Gram-negative infections.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
15
|
Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A, Loubet P, Lavigne JP, Pantel A, Sotto A. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front Cell Infect Microbiol 2022; 12:1048633. [PMID: 36544909 PMCID: PMC9762507 DOI: 10.3389/fcimb.2022.1048633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Novel last resort beta-lactam antibiotics are now available for management of infections due to New-Delhi Metallo-Beta-Lactamase (NDM) producing Enterobacterales and non-fermenters with Difficult-to-Treat Resistance. However, data regarding the use of imipenem-cilastatin-relebactam (IMI-REL), cefiderocol (CFD) and ceftazidime-avibactam plus aztreonam (CAZ-AVI-ATM) are scarce in real-life settings. This study aimed to describe the use of last resort beta-lactam antibiotics, the microbiology and the outcome, in patients hospitalized in a tertiary hospital. Methods We conducted a monocentric observational cohort study from 2020/01/01, to 2022/08/31. We screened all patients admitted to Nimes University Hospital who have received ≥ 1 dose of last resort beta-lactam antibiotics during the study period, using the Pharmacy database. We included patients treated with IMI-REL, CFD and CAZ-AVI-ATM. The primary endpoint was the infection-free survival rate. We also calculated rates of microbiological and clinical cure, recurrent infection, death and adverse events. Results Twenty-seven patients were included in the study and 30 treatment courses were analyzed: CFD (N=24; 80%), CAZ-AVI-ATM (N=3; 10%) and IMI-REL (N=3; 10%). Antibiotics were used in 21 males (70%) and 9 females (30%) with a median age at 65-year-old [50-73.5] and a median Charlson index at 1 [0-2]. Almost all the patients had ≥ 1 risk factor for carbapenem resistant bacteria, a half of them was hospitalized for severe COVID-19, and most of antibiotic courses (N=26; 87%) were associated with ICU admission. In the study population, the probability of infection-free survival at day-90 after last resort beta-lactam therapy initiation was 48.4% CI95% [33.2-70.5]. Clinical failure rate was at 30%, microbiological failure rate at 33% and mortality rate at 23%. Adverse events were documented in 5 antibiotic courses (17%). In details, P. aeruginosa were mainly treated with CFD and IMI-REL, S. maltophilia with CFD and CAZ-AVI-ATM, A. baumannii with CFD, and NDM producing-K. pneumoniae with CAZ-AVI-ATM and CFD. After a treatment course with CFD, CAZ-AVI-ATM and IMI-REL, the probability of infection-free survival was 48% CI95% [10.4-73.5], 33.3% CI95% [6.7-100], 66.7% CI95% [30-100], respectively. Discussion/conclusion Use of last resort beta-lactam antimicrobials in real-life settings was a safe and efficient therapeutic option for severe infections related to Gram-negative bacteria with Difficult-to-Treat Resistance.
Collapse
Affiliation(s)
- Romaric Larcher
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,PhyMedExp (Physiology and Experimental Medicine), INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, Montpellier, France,*Correspondence: Romaric Larcher,
| | | | - Claire Roger
- Anesthesiology and Critical Care Medicine, Nimes University Hospital, Nimes, France
| | - Regine Doncesco
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Celine Groul-Viaud
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France
| | - Aurelie Martin
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Paul Loubet
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Albert Sotto
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| |
Collapse
|
16
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
17
|
Díaz Santos E, Mora Jiménez C, Del Río-Carbajo L, Vidal-Cortés P. Treatment of severe multi-drug resistant Pseudomonas aeruginosa infections. Med Intensiva 2022; 46:508-520. [PMID: 35840495 DOI: 10.1016/j.medine.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas aeruginosa is the microorganism most frequently involved in the main ICU-acquired infections, with special importance in ventilator associated pneumonia. Its importance lies, in addition to its high incidence in critically ill patients, in the severity of the infections it causes and in the difficulty of its antimicrobial treatment, directly related to the high percentage of resistance to antibiotics classically considered first-line. New active antibiotics have recently been developed against Pseudomonas aeruginosa, even against multi-drug resistant strains. This review analyzes both the differential characteristics of Pseudomonas aeruginosa infections and the new therapeutic options, focusing on multi-drug resistant Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- E Díaz Santos
- Medicina Intensiva, Consorci Corporació Sanitaria Parc Taulí, Sabadell, Barcelona, Spain; Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Mora Jiménez
- Medicina Intensiva, Consorci Corporació Sanitaria Parc Taulí, Sabadell, Barcelona, Spain
| | - L Del Río-Carbajo
- Medicina Intensiva, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - P Vidal-Cortés
- Medicina Intensiva, Complexo Hospitalario Universitario de Ourense, Ourense, Spain.
| |
Collapse
|
18
|
Canton R, Doi Y, Simner PJ. Treatment of carbapenem-resistant Pseudomonas aeruginosa infections: a case for cefiderocol. Expert Rev Anti Infect Ther 2022; 20:1077-1094. [PMID: 35502603 DOI: 10.1080/14787210.2022.2071701] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Carbapenem-resistant (CR) Pseudomonas aeruginosa infections constitute a serious clinical threat globally. Patients are often critically ill and/or immunocompromised. Antibiotic options are limited and are currently centered on beta-lactam-beta-lactamase inhibitor (BL-BLI) combinations and the siderophore cephalosporin cefiderocol. AREAS COVERED This article reviews the mechanisms of P. aeruginosa resistance and their potential impact on the activity of current treatment options, along with evidence for the clinical efficacy of BL-BLI combinations in P. aeruginosa infections, some of which specifically target infections due to CR organisms. The preclinical and clinical evidence supporting cefiderocol as a treatment option for P. aeruginosa involving infections is also reviewed. EXPERT OPINION Cefiderocol is active against most known P. aeruginosa mechanisms mediating carbapenem resistance. It is stable against different serine- and metallo-beta-lactamases, and, due to its iron channel-dependent uptake mechanism, is not impacted by porin channel loss. Furthermore, the periplasmic level of cefiderocol is not affected by upregulated efflux pumps. The potential for on-treatment resistance development currently appears to be low, although more clinical data are required. Information from surveillance programs, real-world compassionate use, and clinical studies demonstrate that cefiderocol is an important treatment option for CR P. aeruginosa infections.
Collapse
Affiliation(s)
- Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. Antibiotics (Basel) 2022; 11:antibiotics11081009. [PMID: 35892399 PMCID: PMC9394369 DOI: 10.3390/antibiotics11081009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Carbapenem resistance in Gram-negative bacteria has come into sight as a serious global threat. Carbapenem-resistant Gram-negative pathogens and their main representatives Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are ranked in the highest priority category for new treatments. The worrisome phenomenon of the recent years is the presence of difficult-to-treat resistance (DTR) and pandrug-resistant (PDR) Gram-negative bacteria, characterized as non-susceptible to all conventional antimicrobial agents. DTR and PDR Gram-negative infections are linked with high mortality and associated with nosocomial infections, mainly in critically ill and ICU patients. Therapeutic options for infections caused by DTR and PDR Gram-negative organisms are extremely limited and are based on case reports and series. Herein, the current available knowledge regarding treatment of DTR and PDR infections is discussed. A focal point of the review focuses on salvage treatment, synergistic combinations (double and triple combinations), as well as increased exposure regimen adapted to the MIC of the pathogen. The most available data regarding novel antimicrobials, including novel β-lactam-β-lactamase inhibitor combinations, cefiderocol, and eravacycline as potential agents against DTR and PDR Gram-negative strains in critically ill patients are thoroughly presented.
Collapse
|
20
|
Abstract
Imipenem (IMI)/cilastatin/relebactam (REL) (I/R) is a novel β-lactam/β-lactamase inhibitor combination with expanded microbiologic activity against carbapenem-resistant non-Morganellaceae Enterobacterales (CR-NME) and difficult-to-treat (DTR) Pseudomonas aeruginosa. Relebactam, a bicyclic diazabicyclooctane, has no direct antimicrobial activity but provides reliable inhibition of many Ambler class A and class C enzymes. It is currently approved for the treatment of adult patients with hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) and those with complicated urinary tract infections (cUTIs) and complicated intra-abdominal infections (cIAIs) when limited or no alternative treatments are available. Given the number of recently approved β-lactams with expanded activity against highly resistant Gram-negative pathogens, this review summarizes the published literature on I/R, with a focus on its similar and distinguishing characteristics relative to those of other recently approved agents. Overall, available data support its use for the treatment of patients with HABP/VABP, cUTI, and cIAI due to CR-NME and DTR P. aeruginosa. Data indicate that I/R retains some activity against CR-NME and DTR P. aeruginosa isolates that are resistant to the newer β-lactams and vice versa, suggesting that susceptibility testing be performed for all the newer agents to determine optimal treatment options for patients with CR-NME and DTR P. aeruginosa infections. Further comparative PK/PD and clinical studies are warranted to determine the optimal role of I/R, alone and in combination, for the treatment of patients with highly resistant Gram-negative infections. Until further data are available, I/R is a potential treatment for patients with CR-NME and DTR P. aeruginosa infections when the benefits outweigh the risks.
Collapse
|
21
|
Tratamiento de las infecciones graves por Pseudomonas aeruginosa multirresistente. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Losito AR, Raffaelli F, Del Giacomo P, Tumbarello M. New Drugs for the Treatment of Pseudomonas aeruginosa Infections with Limited Treatment Options: A Narrative Review. Antibiotics (Basel) 2022; 11:antibiotics11050579. [PMID: 35625223 PMCID: PMC9137685 DOI: 10.3390/antibiotics11050579] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/13/2022] Open
Abstract
P. aeruginosa is still one of the most threatening pathogens responsible for serious hospital-acquired infections. It is intrinsically resistant to many antimicrobial agents and additional acquired resistance further complicates the management of such infections. High rates of combined antimicrobial resistance persist in many countries, especially in the eastern and south-eastern parts of Europe. The aim of this narrative review is to provide a comprehensive assessment of the epidemiology, latest data, and clinical evidence on the current and new available drugs active against P. aeruginosa isolates with limited treatment options. The latest evidence and recommendations supporting the use of ceftolozane-tazobactam and ceftazidime-avibactam, characterized by targeted clinical activity against a significant proportion of P. aeruginosa strains with limited treatment options, are described based on a review of the latest microbiological and clinical studies. Cefiderocol, with excellent in vitro activity against P. aeruginosa isolates, good stability to all β-lactamases and against porin and efflux pumps mutations, is also examined. New carbapenem combinations are explored, reviewing the latest experimental and initial clinical evidence. One section is devoted to a review of new anti-pseudomonal antibiotics in the pipeline, such as cefepime-taniborbactam and cefepime-zidebactam. Finally, other “old” antimicrobials, mainly fosfomycin, that can be used as combination strategies, are described.
Collapse
Affiliation(s)
- Angela Raffaella Losito
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.L.); (F.R.); (P.D.G.)
| | - Francesca Raffaelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.L.); (F.R.); (P.D.G.)
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.R.L.); (F.R.); (P.D.G.)
| | - Mario Tumbarello
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy
- Correspondence: or ; Tel.: +39-0577-586572
| |
Collapse
|
23
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
24
|
The Role of Colistin in the Era of New β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics (Basel) 2022; 11:antibiotics11020277. [PMID: 35203879 PMCID: PMC8868358 DOI: 10.3390/antibiotics11020277] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
With the current crisis related to the emergence of carbapenem-resistant Gram-negative bacteria (CR-GNB), classical treatment approaches with so-called “old-fashion antibiotics” are generally unsatisfactory. Newly approved β-lactam/β-lactamase inhibitors (BLBLIs) should be considered as the first-line treatment options for carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) infections. However, colistin can be prescribed for uncomplicated lower urinary tract infections caused by CR-GNB by relying on its pharmacokinetic and pharmacodynamic properties. Similarly, colistin can still be regarded as an alternative therapy for infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) until new and effective agents are approved. Using colistin in combination regimens (i.e., including at least two in vitro active agents) can be considered in CRAB infections, and CRE infections with high risk of mortality. In conclusion, new BLBLIs have largely replaced colistin for the treatment of CR-GNB infections. Nevertheless, colistin may be needed for the treatment of CRAB infections and in the setting where the new BLBLIs are currently unavailable. In addition, with the advent of rapid diagnostic methods and novel antimicrobials, the application of personalized medicine has gained significant importance in the treatment of CRE infections.
Collapse
|