1
|
Lübke J, Metzgeroth G, Reiter A, Schwaab J. Approach to the patient with eosinophilia in the era of tyrosine kinase inhibitors and biologicals. Curr Hematol Malig Rep 2024; 19:208-222. [PMID: 39037514 PMCID: PMC11416429 DOI: 10.1007/s11899-024-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW In this review, we aim to explore the optimal approach to patients presenting with eosinophilia, considering recent advances in diagnostic and therapeutic strategies. Specifically, we focus on the integration of novel therapies into clinical practice to improve patient outcomes. RECENT FINDINGS Advanced insights into the clinical and genetic features of eosinophilic disorders have prompted revisions in diagnostic criteria by the World Health Organization classification (WHO-HAEM5) and the International Consensus Classification (ICC). These changes reflect a growing understanding of disease pathogenesis and the development of targeted treatment options. The therapeutic landscape now encompasses a range of established and novel therapies. For reactive conditions, drugs targeting the eosinophilopoiesis, such as those aimed at interleukin-5 or its receptor, have demonstrated significant potential in decreasing blood eosinophil levels and minimizing disease flare-ups and relapse. These therapies have the potential to mitigate the side effects commonly associated with prolonged use of oral corticosteroids or immunosuppressants. Myeloid and lymphoid neoplasms with eosinophilia and tyrosine kinase (TK) gene fusions are managed by various TK inhibitors with variable efficacy. Diagnosis and treatment rely on a multidisciplinary approach. By incorporating novel treatment options into clinical practice, physicians across different disciplines involved in the management of eosinophilic disorders can offer more personalized and effective care to patients. However, challenges remain in accurately diagnosing and risk-stratifying patients, as well as in navigating the complexities of treatment selection.
Collapse
Affiliation(s)
- Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
2
|
Gorantla SP, Prince G, Osius J, Dinesh DC, Boddu V, Duyster J, von Bubnoff N. Type II mode of JAK2 inhibition and destabilization are potential therapeutic approaches against the ruxolitinib resistance driven myeloproliferative neoplasms. Front Oncol 2024; 14:1430833. [PMID: 39091915 PMCID: PMC11291247 DOI: 10.3389/fonc.2024.1430833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Ruxolitinib has been approved by the US FDA for the treatment of myeloproliferative neoplasms such as polycythemia vera and primary myelofibrosis. Ruxolitinib will remain a main stay in the treatment of MPN patients due to its effective therapeutic benefits. However, there have been instances of ruxolitinib resistance in MPN patients. As JAK2 is a direct target of ruxolitinib, we generated ruxolitinib-resistant clones to find out the mechanism of resistance. Methods Cell-based screening strategy was used to detect the ruxolitinib-resistant mutations in JAK2. The Sanger sequencing method was used to detect the point mutations in JAK2. Mutations were re-introduced using the site-directed mutagenesis method and stably expressed in Ba/F3 cells. Drug sensitivities against the JAK2 inhibitors were measured using an MTS-based assay. JAK2 and STAT5 activation levels and total proteins were measured using immunoblotting. Computational docking studies were performed using the Glide module of Schrodinger Maestro software. Results In this study, we have recovered seven residues in the kinase domain of JAK2 that affect ruxolitinib sensitivity. All these mutations confer cross-resistance across the panel of JAK2 kinase inhibitors except JAK2-L983F. JAK2-L983F reduces the sensitivity towards ruxolitinib. However, it is sensitive towards fedratinib indicating that our screen identifies the drug-specific resistance profiles. All the ruxolitinib-resistant JAK2 variants displayed sensitivity towards type II JAK2 inhibitor CHZ-868. In this study, we also found that JAK1-L1010F (homologous JAK2-L983F) is highly resistant towards ruxolitinib suggesting the possibility of JAK1 escape mutations in JAK2-driven MPNs and JAK1 mutated ALL. Finally, our study also shows that HSP90 inhibitors are potent against ruxolitinib-resistant variants through the JAK2 degradation and provides the rationale for clinical evaluation of potent HSP90 inhibitors in genetic resistance driven by JAK2 inhibitors. Conclusion Our study identifies JAK1 and JAK2 resistance variants against the type I JAK2 inhibitors ruxolitinib, fedratinib, and lestaurtinib. The sensitivity of these resistant variants towards the type II JAK2 inhibitor CHZ-868 indicates that this mode of type II JAK2 inhibition is a potential therapeutic approach against ruxolitinib refractory leukemia. This also proposes the development of potent and specific type II JAK2 inhibitors using ruxolitinib-resistance variants as a prototype.
Collapse
Affiliation(s)
- Sivahari P. Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Gerin Prince
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Jasmin Osius
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Dhurvas Chandrasekaran Dinesh
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Vijay Boddu
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Justus Duyster
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
3
|
Brunetti M, Andersen K, Spetalen S, Lenartova A, Osnes LTN, Vålerhaugen H, Heim S, Micci F. NUP214 fusion genes in acute leukemias: genetic characterization of rare cases. Front Oncol 2024; 14:1371980. [PMID: 38571499 PMCID: PMC10987735 DOI: 10.3389/fonc.2024.1371980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Alterations of the NUP214 gene (9q34) are recurrent in acute leukemias. Rearrangements of chromosomal band 9q34 targeting this locus can be karyotypically distinct, for example t(6;9)(p22;q34)/DEK::NUP214, or cryptic, in which case no visible change of 9q34 is seen by chromosome banding. Methods We examined 9 cases of acute leukemia with NUP214 rearrangement by array Comparative Genomic Hybridization (aCGH), reverse-transcription polymerase chain reaction (RT-PCR), and cycle sequencing/Sanger sequencing to detect which fusion genes had been generated. Results The chimeras DEK::NUP214, SET::NUP214, and NUP214::ABL1 were found, only the first of which can be readily detected by karyotyping. Discussion The identification of a specific NUP214 rearrangement is fundamental in the management of these patients, i.e., AMLs with DEK::NUP214 are classified as an adverse risk group and might be considered for allogenic transplant. Genome- and/or transcriptome-based next generation sequencing (NGS) techniques can be used to screen for these fusions, but we hereby present an alternative, step-wise procedure to detect these rearrangements.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Signe Spetalen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Andrea Lenartova
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | | | - Helen Vålerhaugen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
[Guideline of the diagnosis and treatment of eosinophilic disorders (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:1-7. [PMID: 38527831 PMCID: PMC10951113 DOI: 10.3760/cma.j.cn121090-20231222-00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 03/27/2024]
Abstract
The eosinophilias encompass a broad range of nonhematologic (secondary or reactive) and hematologic (primary or clonal) disorders with potential for end-organ damage. Based on new clinical data and increased understanding of disease molecular genetics, the World Health Organization (WHO) and the international consensus classification (ICC) has provided updated criteria and classifications for eosinophilic disorders in 2022. This guideline represents an update of Chinese expert consensus on the diagnosis and treatment of eosinophilia published in 2017 and aim to provide Chinese hematologist with clear guidance on management for eosinophilic disorders.
Collapse
|
5
|
Morales-Camacho RM, Caballero-Velázquez T, Borrero JJ, Bernal R, Prats-Martín C. Hematological Neoplasms with Eosinophilia. Cancers (Basel) 2024; 16:337. [PMID: 38254826 PMCID: PMC10814743 DOI: 10.3390/cancers16020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Eosinophils in peripheral blood account for 0.3-5% of leukocytes, which is equivalent to 0.05-0.5 × 109/L. A count above 0.5 × 109/L is considered to indicate eosinophilia, while a count equal to or above 1.5 × 109/L is defined as hypereosinophilia. In bone marrow aspirate, eosinophilia is considered when eosinophils make up more than 6% of the total nuclear cells. In daily clinical practice, the most common causes of reactive eosinophilia are non-hematologic, whether they are non-neoplastic (allergic diseases, drugs, infections, or immunological diseases) or neoplastic (solid tumors). Eosinophilia that is associated with a hematological malignancy may be reactive or secondary to the production of eosinophilopoietic cytokines, and this is mainly seen in lymphoid neoplasms (Hodgkin lymphoma, mature T-cell neoplasms, lymphocytic variant of hypereosinophilic syndrome, and B-acute lymphoblastic leukemia/lymphoma). Eosinophilia that is associated with a hematological malignancy may also be neoplastic or primary, derived from the malignant clone, usually in myeloid neoplasms or with its origin in stem cells (myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions, acute myeloid leukemia with core binding factor translocations, mastocytosis, myeloproliferative neoplasms, myelodysplastic/myeloproliferative neoplasms, and myelodysplastic neoplasms). There are no concrete data in standardized cytological and cytometric procedures that could predict whether eosinophilia is reactive or clonal. The verification is usually indirect, based on the categorization of the accompanying hematologic malignancy. This review focuses on the broad differential diagnosis of hematological malignancies with eosinophilia.
Collapse
Affiliation(s)
- Rosario M. Morales-Camacho
- Department of Hematology, Virgen del Rocío University Hospital, Seville Biomedicine Institute (IBiS/CSIC), University of Seville, 41013 Seville, Spain (R.B.)
| | - Teresa Caballero-Velázquez
- Department of Hematology, Virgen del Rocío University Hospital, Seville Biomedicine Institute (IBiS/CSIC), University of Seville, 41013 Seville, Spain (R.B.)
| | - Juan José Borrero
- Department of Pathology, Virgen del Rocío University Hospital, 41013 Seville, Spain;
| | - Ricardo Bernal
- Department of Hematology, Virgen del Rocío University Hospital, Seville Biomedicine Institute (IBiS/CSIC), University of Seville, 41013 Seville, Spain (R.B.)
| | - Concepción Prats-Martín
- Department of Hematology, Virgen del Rocío University Hospital, Seville Biomedicine Institute (IBiS/CSIC), University of Seville, 41013 Seville, Spain (R.B.)
| |
Collapse
|
6
|
Zhang L, Zhu X, Qu W, Lu Y, Feng Z, Zhao L. Myeloid/lymphoid neoplasms associated with eosinophilia and rearrangements of PCM1::JAK2 with erythroblastic sarcoma: a case report and literature review. Haematologica 2023; 108:3506-3510. [PMID: 37102606 PMCID: PMC10690894 DOI: 10.3324/haematol.2022.282228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Institute of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203
| | - Xiaoqin Zhu
- Department of Haematology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203
| | - Weiying Qu
- Department of Haematology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203
| | - Yingjia Lu
- Department of Haematology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203
| | - Zhou Feng
- Department of Haematology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203
| | - Lin Zhao
- Department of Haematology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203.
| |
Collapse
|
7
|
Metzgeroth G, Steiner L, Naumann N, Lübke J, Kreil S, Fabarius A, Haferlach C, Haferlach T, Hofmann WK, Cross NCP, Schwaab J, Reiter A. Myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions: reevaluation of the defining characteristics in a registry-based cohort. Leukemia 2023; 37:1860-1867. [PMID: 37454239 PMCID: PMC10457188 DOI: 10.1038/s41375-023-01958-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In a registry-based analysis of 135 patients with "myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions" (MLN-TK; FIP1L1::PDGFRA, n = 78; PDGFRB, diverse fusions, n = 26; FGFR1, diverse, n = 9; JAK2, diverse, n = 11; ETV6::ABL1, n = 11), we sought to evaluate the disease-defining characteristics. In 81/135 (60%) evaluable patients, hypereosinophilia (>1.5 × 109/l) was observed in 40/44 (91%) FIP1L1::PDGFRA and 7/7 (100%) ETV6::ABL1 positive patients but only in 13/30 (43%) patients with PDGFRB, FGFR1, and JAK2 fusion genes while 9/30 (30%) patients had no eosinophilia. Monocytosis >1 × 109/l was identified in 27/81 (33%) patients, most frequently in association with hypereosinophilia (23/27, 85%). Overall, a blast phase (BP) was diagnosed in 38/135 (28%) patients (myeloid, 61%; lymphoid, 39%), which was at extramedullary sites in 18 (47%) patients. The comparison between patients with PDGFRA/PDGFRB vs. FGFR1, JAK2, and ETV6::ABL1 fusion genes revealed a similar occurrence of primary BP (17/104, 16% vs. 8/31 26%, p = 0.32), a lower frequency (5/87, 6% vs. 8/23, 35%, p = 0.003) of and a later progression (median 87 vs. 19 months, p = 0.053) into secondary BP, and a better overall survival from diagnosis of BP (17.1 vs. 1.7 years, p < 0.0008). We conclude that hypereosinophilia with or without monocytosis and various phenotypes of BP occur at variable frequencies in MLN-TK.
Collapse
Affiliation(s)
- Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Laurenz Steiner
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Naumann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Lübke
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Kreil
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
8
|
Zhang L, Shah B, Zhang Y, Tashkandi H, Xiao W, Fernandez-Pol S, Vergara-Lluri M, Hussaini M, Song J, Lancet J, Moscinski L, Yun S, Lu CM, Medeiros LJ, Tang G. Clinicopathologic characteristics, genetic features, and treatment options for acute lymphoblastic leukemia with JAK2 rearrangement-A 10-case study and literature review. Hum Pathol 2023; 136:1-15. [PMID: 36958463 DOI: 10.1016/j.humpath.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
JAK2 rearrangement (JAK2-R) in acute lymphoblastic leukemia (ALL) is rare and often categorized as B-ALL with BCR::ABL1-like features based on the World Health Organization classification. We report 10 patients with JAK2-R ALL, 9 males and 1 female, with a median age 40.5 years. Eight patients presented with marked leukocytosis (median WBC, 63 × 10 9/L) and hypercellular (>95%) bone marrow with increased lymphoblasts (72%-95%). There was no evidence of bone marrow fibrosis or hypereosinophilia. Immunophenotypic analysis showed 9 B-cell and 1 T-cell neoplasms. Using fluorescence in situ hybridization (FISH) and RNA sequencing analysis, JAK2 partners were identified for 7 cases and included PCM1 (n=4), ETV6 (n=2) and BCR (n=1). All patients received upfront polychemotherapy. Additionally, 2 patients received ruxolitinib, 2 received allogeneic stem cell transplant, and 1 received CAR-T therapy. The 1- and 3-year overall survival rates were 55.6% and 22.2%, respectively. A literature review identified 24 B-ALL and 4 T-ALL cases with JAK2-R reported, including 16 males, 6 females and 6 gender not stated. Many JAK2 partner-genes were reported with the most common being PAX5 (n=7), ETV6 (n=4), BCR (n=3) and PCM1 (n=2). Survival data or 13 reported cases showed 1- and 3-year overall survival rates of 41.7% and 41.7%, respectively. In summary, JAK2-R ALL occurs more often in adult males, are mostly of B-cell lineage, and associated with an aggressive clinical course. Absence of eosinophilia and bone marrow fibrosis and no evidence of preexisting/concurrent JAK2-R myeloid neoplasms distinguish JAK2-R ALL from other myeloid/lymphoid neoplasms with eosinophilia and JAK2-R.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bijal Shah
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Yumeng Zhang
- Morsani College of Medicine, the University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hammad Tashkandi
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wenbin Xiao
- Department of Pathology, Memorial Sloane Kettering Cancer Center, New York, New York, USA
| | | | - Maria Vergara-Lluri
- Department of Pathology, Hematopathology Section, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hussaini
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey Lancet
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Lynn Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Seongseok Yun
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Chuanyi M Lu
- Department of Laboratory Medicine, University of California at San Francisco and San Francisco VA Health Care System, San Francisco, CA, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
9
|
Tzankov A, Reichard KK, Hasserjian RP, Arber DA, Orazi A, Wang SA. Updates on eosinophilic disorders. Virchows Arch 2023; 482:85-97. [PMID: 36068374 DOI: 10.1007/s00428-022-03402-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
This review addresses changes and updates in eosinophilic disorders under the International Consensus Classification (ICC). The previous category of myeloid/lymphoid neoplasm with eosinophilia (M/LN-eo) and a specific gene rearrangement is changed to M/LN-eo with tyrosine kinase gene fusions to reflect the underlying genetic lesions. Two new members, M/LN-eo with ETV6::ABL1 fusion and M/LN-eo with various FLT3 fusions, have been added to the category; and M/LN-eo with PCM1::JAK2 and its genetic variants ETV6::JAK2 and BCR::JAK2 are recognized as a formal entity from their former provisional status. The updated understanding of the clinical and molecular genetic features of PDGFRA, PDGFRB and FGFR1 neoplasms is summarized. Clear guidance as to how to distinguish these fusion gene-associated disorders from the overlapping entities of Ph-like B-acute lymphoblastic leukemia (ALL), de novo T-ALL, and systemic mastocytosis is provided. Bone marrow morphology now constitutes one of the diagnostic criteria of chronic eosinophilic leukemia, NOS (CEL, NOS), and idiopathic hypereosinophilia/hypereosinophilic syndrome (HE/HES), facilitating the separation of a true myeloid neoplasm with characteristic eosinophilic proliferation from those of unknown etiology and not attributable to a myeloid neoplasm.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kaaren K Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, NY, Rochester, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, IL, Chicago, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sa A Wang
- Department of Hematopathology, Division of Pathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|