1
|
Rifi Z, Harary M, Walshaw PD, Frew AJ, Everson RG, Fallah A, Salamon N, Kim W. Functional magnetic resonance imaging (fMRI) as adjunct for planning laser interstitial thermal therapy (LITT) near eloquent structures. Acta Neurochir (Wien) 2024; 166:66. [PMID: 38316692 PMCID: PMC10844152 DOI: 10.1007/s00701-024-05970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024]
Abstract
LITT is a minimally-invasive laser ablation technique used to treat a wide variety of intracranial lesions. Difficulties performing intraoperative mapping have limited its adoption for lesions in/near eloquent regions. In this institutional case series, we demonstrate the utility of fMRI-adjunct planning for LITT near language or motor areas. Six out of 7 patients proceeded with LITT after fMRI-based tractography determined adequate safety margins for ablation. All underwent successful ablation without new or worsening postoperative symptoms requiring adjuvant corticosteroids, including those with preexisting deficits. fMRI is an easily accessible adjunct which may potentially reduce chances of complications in LITT near eloquent structures.
Collapse
Affiliation(s)
- Ziad Rifi
- David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Patricia D Walshaw
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Andrew J Frew
- Department of Neurosurgery, University of California, Los Angeles, USA
- Department of Radiology, University of California, Los Angeles, USA
| | - Richard G Everson
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Noriko Salamon
- Department of Radiology, University of California, Los Angeles, USA
| | - Won Kim
- Department of Neurosurgery, University of California, Los Angeles, USA.
| |
Collapse
|
2
|
Morello A, Bianconi A, Rizzo F, Bellomo J, Meyer AC, Garbossa D, Regli L, Cofano F. Laser Interstitial Thermotherapy (LITT) in Recurrent Glioblastoma: What Window of Opportunity for This Treatment? Technol Cancer Res Treat 2024; 23:15330338241249026. [PMID: 38693845 PMCID: PMC11067676 DOI: 10.1177/15330338241249026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
Laser Interstitial Thermotherapy is a minimally invasive treatment option in neurosurgery for intracranial tumors, including recurrent gliomas. The technique employs the thermal ablation of target tissue to achieve tumor control with real-time monitoring of the extent by magnetic resonance thermometry, allowing targeted thermal injury to the lesion. Laser Interstitial Thermotherapy has gained interest as a treatment option for recurrent gliomas due to its minimally invasive nature, shorter recovery times, ability to be used even in patients with numerous comorbidities, and potential to provide local tumor control. It can be used as a standalone treatment or combined with other therapies, such as chemotherapy or radiation therapy. We describe the most recent updates regarding several studies and case reports that have evaluated the efficacy and safety of Laser Interstitial Thermotherapy for recurrent gliomas. These studies have reported different outcomes, with some demonstrating promising results in terms of tumor control and patient survival, while others have shown mixed outcomes. The success of Laser Interstitial Thermotherapy depends on various factors, including tumor characteristics, patient selection, and the experience of the surgical team, but the future direction of treatment of recurrent gliomas will include a combined approach, comprising Laser Interstitial Thermotherapy, particularly in deep-seated brain regions. Well-designed prospective studies will be needed to establish with certainty the role of Laser Interstitial Thermotherapy in the treatment of recurrent glioma.
Collapse
Affiliation(s)
- Alberto Morello
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Bianconi
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| | - Francesca Rizzo
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| | - Jacopo Bellomo
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Awake Laser Ablation with Continuous Neuropsychological Testing During Treatment of Brain Tumors and Epilepsy. Neurosurg Clin N Am 2023; 34:239-245. [PMID: 36906330 DOI: 10.1016/j.nec.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MR-guided laser interstitial thermal therapy (LITT) is feasible and safe in the awake patient. Awake LITT may be performed with analgesics for head fixation in a head-ring, no sedation during laser ablation, and with continuous neurological testing in patients with brain tumors and epilepsy. In the LITT treatment of lesions near eloquent areas and subcortical fiber tracts, neurological function can potentially be preserved by monitoring the patient during laser ablation.
Collapse
|
4
|
Role of Laser Interstitial Thermal Therapy in the Management of Primary and Metastatic Brain Tumors. Curr Treat Options Oncol 2021; 22:108. [PMID: 34687357 DOI: 10.1007/s11864-021-00912-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Laser interstitial thermal therapy (LITT) is a minimally invasive treatment option for brain tumors including glioblastoma, other primary central nervous system (CNS) neoplasms, metastases, and radiation necrosis. LITT employs a fiber optic coupled laser delivery probe stabilized via stereotaxis to deliver thermal energy that induces coagulative necrosis in tumors to achieve effective cytoreduction. LITT complements surgical resection, radiation treatment, tumor treating fields, and systemic therapy, especially in patients who are high risk for surgical resection due to tumor location in eloquent regions or poor functional status. These factors must be balanced with the increased rate of cerebral edema post LITT compared to surgical resection. LITT has also been shown to induce transient disruption of the blood-brain barrier (BBB), especially in the peritumoral region, which allows for enhanced CNS delivery of anti-neoplastic agents, thus greatly expanding the armamentarium against brain tumors to include highly effective anti-neoplastic agents that have poor BBB penetration. In addition, hyperthermia-induced immunogenic cell death is another secondary side effect of LITT that opens up immunotherapy as an attractive adjuvant treatment for brain tumors. Numerous large studies have demonstrated the safety and efficacy of LITT against various CNS tumors and as the literature continues to grow on this novel technique so will its indications.
Collapse
|
5
|
Avecillas-Chasin JM, Atik A, Mohammadi AM, Barnett GH. Laser thermal therapy in the management of high-grade gliomas. Int J Hyperthermia 2021; 37:44-52. [PMID: 32672121 DOI: 10.1080/02656736.2020.1767807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive therapy that have been used for brain tumors, epilepsy, chronic pain, and other spine pathologies. This therapy is performed under imaging and stereotactic guidance to precisely direct the probe and ablate the area of interest using real-time magnetic resonance (MR) thermography. LITT has gained popularity as a treatment for glioma because of its minimally invasive nature, small skin incision, repeatability, shorter hospital stay, and the possibility of receiving adjuvant therapy shortly after surgery instead of several weeks as required after open surgical resection. Several reports have demonstrated the usefulness of LITT in the treatment of newly-diagnosed and recurrent gliomas. In this review, we will summarize the recent evidence of this therapy in the field of glioma surgery and the future perspectives of the use of LITT combined with other treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet Atik
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alireza M Mohammadi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Chen C, Lee I, Tatsui C, Elder T, Sloan AE. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review. J Neurooncol 2021; 151:429-442. [PMID: 33611709 PMCID: PMC7897607 DOI: 10.1007/s11060-020-03652-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Laser Interstitial Thermotherapy (LITT; also known as Stereotactic Laser Ablation or SLA), is a minimally invasive treatment modality that has recently gained prominence in the treatment of malignant primary and metastatic brain tumors and radiation necrosis and studies for treatment of spinal metastasis has recently been reported. METHODS Here we provide a brief literature review of the various contemporary uses for LITT and their reported outcomes. RESULTS Historically, the primary indication for LITT has been for the treatment of recurrent glioblastoma (GBM). However, indications have continued to expand and now include gliomas of different grades, brain metastasis (BM), radiation necrosis (RN), other types of brain tumors as well as spine metastasis. LITT is emerging as a safe, reliable, minimally invasive clinical approach, particularly for deep seated, focal malignant brain tumors and radiation necrosis. The role of LITT for treatment of other types of tumors of the brain and for spine tumors appears to be evolving at a small number of centers. While the technology appears to be safe and increasingly utilized, there have been few prospective clinical trials and most published studies combine different pathologies in the same report. CONCLUSION Well-designed prospective trials will be required to firmly establish the role of LITT in the treatment of lesions of the brain and spine.
Collapse
Affiliation(s)
- Clark Chen
- University of Minnesotta, Minneapolis, USA
| | - Ian Lee
- Henry Ford Hospitals, Detroit, USA
| | | | - Theresa Elder
- Seidman Cancer Center, University Hospitals, Shaker Heights, USA
| | - Andrew E Sloan
- Seidman Cancer Center, University Hospitals, Shaker Heights, USA.
- Case Comprehensive Cancer Center, Cleveland, USA.
| |
Collapse
|
7
|
Hajtovic S, Mogilner A, Ard J, Gautreaux JE, Britton H, Fatterpekar G, Young MG, Placantonakis DG. Awake Laser Ablation for Patients With Tumors in Eloquent Brain Areas: Operative Technique and Case Series. Cureus 2020; 12:e12186. [PMID: 33489596 PMCID: PMC7815262 DOI: 10.7759/cureus.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (LITT) is a minimally invasive treatment modality that has been gaining traction in neuro-oncology. Laser ablation is a particularly appealing treatment option when eloquent neurologic function at the tumor location precludes conventional surgical excision. Although typically performed under general anesthesia, LITT in awake patients may help monitor and preserve critical neurologic functions. Objective To describe intraoperative workflow and clinical outcomes in patients undergoing awake laser ablation of brain tumors. Methods We present a cohort of six patients with tumors located in eloquent brain areas that were treated with awake LITT and report three different workflow paradigms involving diagnostic or intraoperative MRI. In all cases, we used NeuroBlate® (Monteris Medical, Plymouth, MN) fiberoptic laser probes for stereotactic laser ablation of tumors. The neurologic status of patients was intermittently assessed every few minutes during the ablation. Results The mean preoperative tumor volume that was targeted was 12.09 ± 3.20 cm3, and the estimated ablation volume was 12.06 ± 2.75 cm3. Performing the procedure in awake patients allowed us close monitoring of neurologic function intraoperatively. There were no surgical complications. The length of stay was one day for all patients except one. Three patients experienced acute or delayed worsening of pre-existing neurologic deficits that responded to corticosteroids. Conclusion We propose that awake LITT is a safe approach when tumors in eloquent brain areas are considered for laser ablation.
Collapse
Affiliation(s)
- Sabastian Hajtovic
- Neurosurgery, City University of New York (CUNY) School of Medicine, New York, USA
| | - Alon Mogilner
- Neurological Surgery, New York University (NYU) Grossman School of Medicine, New York, USA
| | - John Ard
- Anesthesiology, New York University (NYU) Grossman School of Medicine, New York, USA
| | | | | | - Girish Fatterpekar
- Radiology, New York University (NYU) Grossman School of Medicine, New York, USA
| | - Matthew G Young
- Radiology, New York University (NYU) Grossman School of Medicine, New York, USA
| | | |
Collapse
|
8
|
Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Raj JGJ, Bozec D, Hadjipanayis CG. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia 2020; 37:3-19. [PMID: 32672123 PMCID: PMC7756245 DOI: 10.1080/02656736.2020.1772512] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice. Laser interstitial thermal therapy (LITT) is currently the most widely utilized thermal ablation approach in clinical practice mainly for the treatment of recurrent or deep-seated tumors in the brain. Magnetic hyperthermia therapy (MHT), which relies on the use of magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs), is a new quite promising HT treatment approach for brain tumors. Initial MHT clinical studies in combination with fractionated radiation therapy (RT) in patients have been completed in Europe with encouraging results. Another combination treatment with HT that warrants further investigation is immunotherapy. HT approaches for brain tumors will continue to a play an important role in neuro-oncology.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel R. Rivera
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline D. Rizea
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Gerald Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dominique Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Constantinos G. Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
9
|
Bozinov O, Yang Y, Oertel MF, Neidert MC, Nakaji P. Laser interstitial thermal therapy in gliomas. Cancer Lett 2020; 474:151-157. [PMID: 31991153 DOI: 10.1016/j.canlet.2020.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Laser interstitial thermal therapy (LITT) has been used for brain metastasis, epilepsy, and necrosis, as well as gliomas as a minimally invasive treatment for many years. With the improvement of the thermal monitoring and ablation precision, especially the application of magnetic resonance (MR) thermography in the procedure and the available two commercial laser systems nowadays, LITT is gradually accepted by more neurosurgical centers. Recently, some new concepts, for example the adjuvant chemotherapy or radiation following LITT, the combination of immunotherapy and LITT regarding the glioma treatment are proposed and currently being investigated. The aim of this study is to summarize the evolution of LITT especially for brain gliomas and a possible outlook of the future.
Collapse
Affiliation(s)
- Oliver Bozinov
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland.
| | - Yang Yang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Peter Nakaji
- Department of Neurosurgery, University of Arizona College of Medicine Phoenix, Banner Health, 755 East McDowell Road, Phoenix, AZ, 85006, USA
| |
Collapse
|
10
|
Samuel N, Berger M. Cultural evolution: a Darwinian perspective on patient safety in neurosurgery. J Neurosurg 2019; 131:1985-1991. [PMID: 31518982 DOI: 10.3171/2019.6.jns191517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nardin Samuel
- 1Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, Canada; and
| | - Mitchel Berger
- 2Department of Neurological Surgery, University of California, San Francisco, California
| |
Collapse
|