Küchenmeister U, Kuhn G, Wegner J, Nürnberg G, Ender K. Post mortem changes in Ca2+ transporting proteins of sarcoplasmic reticulum in dependence on malignant hyperthermia status in pigs.
Mol Cell Biochem 1999;
195:37-46. [PMID:
10395067 DOI:
10.1023/a:1006957323917]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Meat quality of pigs is dependent on biochemical and biophysical processes in the time course post mortem (p.m.) and is associated with the intracellular Ca2+ homeostasis. However, there is little known about changes in the Ca2+ transporting proteins controlling the Ca2+ uptake of sarcoplasmic reticulum (SR) in the time course p.m. In this study changes in the Ca2+ transporting proteins were investigated in homogenates of longissimus muscles of 4 malignant hyperthermia susceptible (MHS) and 6 malignant hyperthermia resistant (MHR) Pietrain pigs. Muscle samples were obtained at different time intervals: biopsy 2 h prior slaughtering and from the carcass immediately after exsanguination (0 h), 45 min, 4 h, and 22 h p.m. The SR Ca2+ uptake rate was measured immediately after homogenization with closed calcium release channel (CRC), with opened CRC and without manipulation of CRC. Additionally the SR Ca2+ ATPase activity was determined. The results show: (i) The ability of SR to sequester Ca2+ declined to about 60% in the first 45 min p.m. in MHS samples irrespective of CRC state, whereas in MHR samples this decline was about 5%; (ii) Ca2+ uptake and Ca2+ ATPase activity were not different between the biopsy and 0 h samples, i.e. the stress of slaughter was of no immediate influence; (iii) The Ca2+ ATPase activity of the SR declined at about the same rate as the Ca2+ uptake in both MHS and MHR pig samples in the course of time p.m.; (iv) In samples, taken immediately after exsanguination, the Ca2+ ATPase activity of MHS pigs was higher than that of MHR pigs. However, in samples taken 4 h p.m. Ca2+ ATPase activity of MHS pigs has declined to about 30% of the value at 0 h; (v) The CRC can be closed and opened in all samples up to 22 h p.m. and seems to be fully functional at all sampling times; (vi) The CRC of MHS pigs is almost fully open, whereas the CRC of MHR pigs is only partially open at all sampling times; (vii) The permeability of the SR membrane to Ca2+ (determined as the ratio of SR Ca2+ ATPase with and without ionophore A23187) is the same in both MHS and MHR and did not change with ongoing time; (viii) No uncoupling of uptake from ATP hydrolysis occurred up to 4 h p.m., but the coupling differed between MHS and MHR for all time intervals with lower values for MHS pigs. The results suggest that the decreasing Ca2+ uptake rate of homogenates, sampled at different times p.m., is essentially caused by changes in the Ca2+ pump and not by changes in the CRC or an increased phospholipid membrane permeability to Ca2+.
Collapse