1
|
Rissiek B, Stabernack J, Cordes M, Duan Y, Behr S, Menzel S, Magnus T, Koch-Nolte F. Astrocytes and Microglia Are Resistant to NAD +-Mediated Cell Death Along the ARTC2/P2X7 Axis. Front Mol Neurosci 2020; 12:330. [PMID: 32009900 PMCID: PMC6971201 DOI: 10.3389/fnmol.2019.00330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
ADP-ribosylation of the P2X7k splice variant on mouse T cells by Ecto-ADP-ribosyltransferase ARTC2.2 in response to its substrate extracellular nicotinamide adenine dinucleotide (NAD+) triggers cell death. Since NAD+ is released as a danger signal during tissue damage, this NAD+-induced cell death (NICD) may impact the survival of other cell populations co-expressing P2X7 and of one of the ARTC2 isoforms (ARTC2.1, ARTC2.2). NICD of brain-resident, non-T cell populations has only been rudimentarily investigated. In this study, we evaluated the susceptibility of two glia cell populations, astrocytes and microglia, towards NICD. We found that astrocytes and microglia strongly upregulate cell surface levels of ARTC2.1 and ADP-ribosylation of cell surface proteins in response to treatment with lipopolysaccharide (LPS) and the mitogen-activated protein kinase kinase (MEK) 1 and 2 inhibitor U0126, but do not respond to extracellular NAD+ with P2X7 activation and induction of cell death. Furthermore, we found that astrocytes and microglia preferentially express the ADP-ribosylation-insensitive P2X7a splice variant, likely accounting for the resistance of these cells to NICD.
Collapse
Affiliation(s)
- Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Cordes
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Behr
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology at University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology at University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Rissiek B, Menzel S, Leutert M, Cordes M, Behr S, Jank L, Ludewig P, Gelderblom M, Rissiek A, Adriouch S, Haag F, Hottiger MO, Koch-Nolte F, Magnus T. Ecto-ADP-ribosyltransferase ARTC2.1 functionally modulates FcγR1 and FcγR2B on murine microglia. Sci Rep 2017; 7:16477. [PMID: 29184112 PMCID: PMC5705771 DOI: 10.1038/s41598-017-16613-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Mammalian ecto-ADP-ribosyltransferases (ecto-ARTs or also ARTCs) catalyze the ADP-ribosylation of cell surface proteins using extracellular nicotinamide adenine dinucleotide (NAD+) as substrate. By this post-translational protein modification, ecto-ARTs modulate the function of various target proteins. A functional role of ARTC2 has been demonstrated for peripheral immune cells such as T cells and macrophages. Yet, little is known about the role of ecto-ARTs in the central nervous system and on microglia. Here, we identified ARTC2.1 as the major ecto-ART expressed on murine microglia. ARTC2.1 expression was strongly upregulated on microglia upon co-stimulation with LPS and an ERK1/2 inhibitor or upon IFNβ stimulation. We identified several target proteins modified by ARTC2.1 on microglia with a recently developed mass spectrometry approach, including two receptors for immunoglobulin G (IgG), FcγR1 and FcγR2B. Both proteins were verified as targets of ARTC2.1 in vitro using a radiolabeling assay with 32P-NAD+ as substrate. Moreover, ADP-ribosylation of both targets strongly inhibited their capacity to bind IgG. In concordance, ARTC2.1 induction in WT microglia and subsequent cell surface ADP-ribosylation significantly reduced the phagocytosis of IgG-coated latex beads, which was unimpaired in NAD+/DTT treated microglia from ARTC2.1-/- mice. Hence, induction of ARTC2.1 expression under inflammatory conditions, and subsequent ADP-ribosylation of cell surface target proteins could represent a hitherto unnoticed mechanism to regulate the immune response of murine microglia.
Collapse
Affiliation(s)
- Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mario Leutert
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Maike Cordes
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Behr
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Jank
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Normandie Univ, UNIROUEN, INSERM, U1234, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Abstract
Protein action in nature is largely controlled by the level of expression and by post-translational modifications. Post-translational modifications result in a proteome that is at least two orders of magnitude more diverse than the genome. There are three basic types of post-translational modifications: covalent modification of an amino acid side chain, hydrolytic cleavage or isomerization of a peptide bond, and reductive cleavage of a disulfide bond. This review addresses the modification of disulfide bonds. Protein disulfide bonds perform either a structural or a functional role, and there are two types of functional disulfide: the catalytic and allosteric bonds. The allosteric disulfide bonds control the function of the mature protein in which they reside by triggering a change when they are cleaved. The change can be in ligand binding, substrate hydrolysis, proteolysis, or oligomer formation. The allosteric disulfides are cleaved by oxidoreductases or by thiol/disulfide exchange, and the configurations of the disulfides and the secondary structures that they link share some recurring features. How these bonds are being identified using bioinformatics and experimental screens and what the future holds for this field of research are also discussed.
Collapse
Affiliation(s)
- Kristina M Cook
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW2052, Australia
| | | |
Collapse
|
4
|
Hong S, Schwarz N, Brass A, Seman M, Haag F, Koch-Nolte F, Schilling WP, Dubyak GR. Differential regulation of P2X7 receptor activation by extracellular nicotinamide adenine dinucleotide and ecto-ADP-ribosyltransferases in murine macrophages and T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:578-92. [PMID: 19542469 DOI: 10.4049/jimmunol.0900120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular NAD induces the ATP-independent activation of the ionotropic P2X(7) purinergic receptor (P2X(7)R) in murine T lymphocytes via a novel covalent pathway involving ADP-ribosylation of arginine residues on the P2X(7)R ectodomain. This modification is catalyzed by ART2.2, a GPI-anchored ADP-ribosyltransferase (ART) that is constitutively expressed in murine T cells. We previously reported that ART2.1, a related ecto-ART, is up-regulated in inflammatory murine macrophages that constitutively express P2X(7)R. Thus, we tested the hypothesis that extracellular NAD acts via ART2.1 to regulate P2X(7)R function in murine macrophages. Coexpression of the cloned murine P2X(7)R with ART2.1 or ART2.2 in HEK293 cells verified that P2X(7)R is an equivalent substrate for ADP-ribosylation by either ART2.1 or ART2.2. However, in contrast with T cells, the stimulation of macrophages or HEK293 cells with NAD alone did not activate the P2X(7)R. Rather, NAD potentiated ATP-dependent P2X(7)R activation as indicated by a left shift in the ATP dose-response relationship. Thus, extracellular NAD regulates the P2X(7)R in both macrophages and T cells but via distinct mechanisms. Although ADP-ribosylation is sufficient to gate a P2X(7)R channel opening in T cells, this P2X(7)R modification in macrophages does not gate the channel but decreases the threshold for gating in response to ATP binding. These findings indicate that extracellular NAD and ATP can act synergistically to regulate P2X(7)R signaling in murine macrophages and also suggest that the cellular context in which P2X(7)R signaling occurs differs between myeloid and lymphoid leukocytes.
Collapse
Affiliation(s)
- Shiyuan Hong
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44120, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Basal and inducible expression of the thiol-sensitive ART2.1 ecto-ADP-ribosyltransferase in myeloid and lymphoid leukocytes. Purinergic Signal 2009; 5:369-83. [PMID: 19404775 DOI: 10.1007/s11302-009-9162-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 04/15/2009] [Indexed: 10/20/2022] Open
Abstract
ADP-ribosylation of cell surface proteins in mammalian cells is a post-translational modification by which ecto-ADP-ribosyltransferases (ARTs) transfer ADP-ribose from extracellular NAD to protein targets. The ART2 locus at murine chromosome 7 encompasses the tandem Art2a and Art2b genes that encode the distinct ART2.1 and ART2.2 proteins. Although both ecto-enzymes share 80% sequence identity, ART2.1 activity is uniquely regulated by an allosteric disulfide bond that is reducible in the presence of extracellular thiols, such as cysteine and glutathione, that accumulate in hypoxic and ischemic tissues. Previous studies have characterized the expression of ART2.1 and ART2.2 in murine T lymphocytes but not in other major classes of lymphoid and myeloid leukocytes. Here, we describe the expression of ART2.1 activity in a wide range of freshly isolated or tissue-cultured murine myeloid and lymphoid leukocytes. Spleen-derived macrophages, dendritic cells (DC), and B cells constitutively express ART2.1 as their predominant ART while spleen T cells express both ART2.1 and the thiol-independent ART2.2 isoform. Although bone-marrow-derived macrophages (BMDM) and dendritic cells (BMDC) constitutively express ART2.1 at low levels, it is markedly up-regulated when these cells are stimulated in vitro with IFNbeta or IFNgamma. ART2.1 expression and activity in splenic B cells is modestly up-regulated during incubation in vitro for 24 h, a condition that promotes B cell apoptosis. This increase in ART2.1 is attenuated by IL-4 (a B cell survival factor), but is not affected by IFNbeta/gamma, suggesting a possible induction of ART2.1 as an ancillary response to B cell apoptosis. In contrast, ART2.1 and ART2.2, which are highly expressed in freshly isolated splenic T cells, are markedly down-regulated when purified T cells are incubated in vitro for 12-24 h. Studies with the BW5147 mouse thymocyte line verified basal expression of ART2.1 and ART2.2, as in primary spleen T cells, and demonstrated that both isoforms can be up-regulated when T cells are maintained in the presence of IFNs. Comparison of the surface proteins which are ADP-ribosylated by ART2.1 in the different leukocyte subtypes indicated both shared and cell-specific proteins as ART2.1 substrates. The LFA-1 integrin, a major target for ART2.2 in T cells, is also ADP-ribosylated by the ART2.1 expressed in macrophages. Thus, ART2.1, in contrast to ART2.2, is expressed in a broad range of myeloid and lymphoid leukocytes. The thiol redox-sensitive nature of this ecto-enzyme suggests an involvement in purinergic signaling that occurs in the combined context of inflammation and hypoxia/ischemia.
Collapse
|
6
|
Hong S, Brass A, Seman M, Haag F, Koch-Nolte F, Dubyak GR. Lipopolysaccharide, IFN-γ, and IFN-β Induce Expression of the Thiol-Sensitive ART2.1 Ecto-ADP-Ribosyltransferase in Murine Macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 179:6215-27. [DOI: 10.4049/jimmunol.179.9.6215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Terashima M, Osago H, Hara N, Tanigawa Y, Shimoyama M, Tsuchiya M. Purification, characterization and molecular cloning of glycosylphosphatidylinositol-anchored arginine-specific ADP-ribosyltransferases from chicken. Biochem J 2005; 389:853-61. [PMID: 15842200 PMCID: PMC1180736 DOI: 10.1042/bj20042019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/18/2005] [Accepted: 04/18/2005] [Indexed: 01/16/2023]
Abstract
Mono-ADP-ribosylation is a post-translational modification that regulates the functions of target proteins or peptides by attaching an ADP-ribose moiety. Here we report the purification, molecular cloning, characterization and tissue-specific distribution of novel arginine-specific Arts (ADP-ribosyltransferases) from chicken. Arts were detected in various chicken tissues as GPI (glycosylphosphatidylinositol)-anchored forms, and purified from the lung membrane fraction. By molecular cloning based on the partial amino acid sequence using 5'- and 3'-RACE (rapid amplification of cDNA ends), two full-length cDNAs of chicken GPI-anchored Arts, cgArt1 (chicken GPI-anchored Art1) and cgArt2, were obtained. The cDNA of cgArt1 encoded a novel polypeptide of 298 amino acids which shows a high degree of identity with cgArt2 (82.9%), Art6.1 (50.2%) and rabbit Art1 (42.1%). In contrast, the nucleotide sequence of cgArt2 was identical with that of Art7 cloned previously from chicken erythroblasts. cgArt1 and cgArt2 proteins expressed in DT40 cells were shown to be GPI-anchored Arts with a molecular mass of 45 kDa, and these Arts showed different enzymatic properties from the soluble chicken Art, Art6.1. RNase protection assays and real-time quantitative PCR revealed distinct expression patterns of the two Arts; cgArt1 was expressed predominantly in the lung, spleen and bone marrow, followed by the heart, kidney and muscle, while cgArt2 was expressed only in the heart and skeletal muscle. Thus GPI-anchored Arts encoded by the genes cgArt1 and cgArt2 are expressed extensively in chicken tissues. It may be worthwhile determining the functional roles of ADP-ribosylation in each tissue.
Collapse
Key Words
- adp-ribosyltransferase
- dt40 cell
- glycosylphosphatidylinositol (gpi) anchor
- nad+
- ap, adapter primer
- art, adp-ribosyltransferase
- cgart, chicken glycosylphosphatidylinositol-anchored art
- cona, concanavalin a
- dtt, dithiothreitol
- fam, 6-carboxyfluorescein
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- gpi, glycosylphosphatidylinositol
- mgb, minor groove binding
- pha, phytohaemagglutinin
- pi-plc, phosphatidylinositol-specific phospholipase c
- race, rapid amplification of cdna ends
- rpa, rnase protection assay
- rt-pcr, reverse transcription–pcr
Collapse
Affiliation(s)
- Masaharu Terashima
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo 693-8501, Japan.
| | | | | | | | | | | |
Collapse
|