1
|
Osakabe A, Molaro A. Histone renegades: Unusual H2A histone variants in plants and animals. Semin Cell Dev Biol 2022; 135:35-42. [PMID: 35570098 DOI: 10.1016/j.semcdb.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022]
Abstract
H2A variants are histones that carry out specialized nucleosome function during the eukaryote genome packaging. Most genes encoding H2A histone variants arose in the distant past, and have highly conserved domains and structures. Yet, novel H2A variants have continued to arise throughout the radiation of eukaryotes and disturbed the apparent tranquility of nucleosomes. These species-specific H2A variants contributed to the functional diversification of nucleosomes through changes in both their structure and expression patterns. In this short review, we discuss the evolutionary trajectories of these histone renegades in plants and animal genomes.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| | - Antoine Molaro
- Genetics, Reproduction & Development Institute (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
2
|
|
3
|
Cohavy O, Harth G, Horwitz M, Eggena M, Landers C, Sutton C, Targan SR, Braun J. Identification of a novel mycobacterial histone H1 homologue (HupB) as an antigenic target of pANCA monoclonal antibody and serum immunoglobulin A from patients with Crohn's disease. Infect Immun 1999; 67:6510-7. [PMID: 10569769 PMCID: PMC97061 DOI: 10.1128/iai.67.12.6510-6517.1999] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
pANCA is a marker antibody associated with inflammatory bowel disease (IBD), including most patients with ulcerative colitis and a subset with Crohn's disease. This study addressed the hypothesis that pANCA reacts with an antigen(s) of microbial agents potentially relevant to IBD pathogenesis. Using a pANCA monoclonal antibody, we have previously identified the C-terminal basic random-coil domain of histone H1 as a pANCA autoantigen. BLAST analysis of the peptide databases revealed H1 epitope homologues in open reading frames of the Mycobacterium tuberculosis genome. Western analysis of extracts from six mycobacterial species directly demonstrated reactivity to a single, conserved approximately 32-kDa protein. Direct protein sequencing, followed by gene cloning, revealed a novel 214-amino-acid protein, an iron-regulated protein recently termed HupB. Sequence analysis demonstrated its homology with the mammalian histone H1 gene family, and recombinant protein expression confirmed its reactivity with the 5-3 pANCA monoclonal antibody. Binding activity of patient serum immunoglobulin G (IgG) to HupB did not correlate with reactivity to histone H1 or pANCA, indicating the complex character of the pANCA antigen. However, anti-HupB IgA was strongly associated with Crohn's disease (P < 0.001). These findings indicate that the 5-3 pANCA monoclonal antibody detects a structural domain recurrent among mycobacteria and cross-reactive with a DNA-binding domain of histone H1. The association of HupB-binding serum IgA with IBD provides new evidence for the association of a mycobacterial species with Crohn's disease.
Collapse
Affiliation(s)
- O Cohavy
- Department of Pathology and Laboratory Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Yan JX, Packer NH, Gooley AA, Williams KL. Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 1998; 808:23-41. [PMID: 9652109 DOI: 10.1016/s0021-9673(98)00115-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein phosphorylation plays a central role in many biological and biomedical phenomena. In this review, while a brief overview of the occurrence and function of protein phosphorylation is given, the primary focus is on studies related to the detection and analysis of phosphorylation both in vivo and in vitro. We focus on phosphorylation of serine, threonine and tyrosine, the most commonly phosphorylated amino acids in eukaryotes. Technologies such as radiolabelling, antibody recognition, chromatographic methods (HPLC, TLC), electrophoresis, Edman sequencing and mass spectrometry are reviewed. We consider the speed, simplicity and sensitivity of tools for detection and identification of protein phosphorylation, as well as quantitation and site characterisation. The limitations of currently available methods are summarised.
Collapse
Affiliation(s)
- J X Yan
- Macquarie University Centre for Analytical Biotechnology, School of Biological Sciences, Macquarie University, Sydney NSW, Australia
| | | | | | | |
Collapse
|
5
|
Glickman JF, Pavlovich JG, Reich NO. Peptide mapping of the murine DNA methyltransferase reveals a major phosphorylation site and the start of translation. J Biol Chem 1997; 272:17851-7. [PMID: 9211941 DOI: 10.1074/jbc.272.28.17851] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The murine DNA methyltransferase catalyzes the transfer of methyl groups from S-adenosylmethionine to cytosines within d(CpG) dinucleotides. The enzyme is necessary for normal embryonic development and is implicated in a number of important processes, including the control of gene expression and cancer. Metabolic labeling and high pressure liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) were performed on DNA methyltransferase purified from murine erythroleukemia cells. Serine 514 was identified as a major phosphorylation site that lies in a domain required for targeting of the enzyme to the replication foci. These results present a potential mechanism for the regulation of DNA methylation. HPLC-ESI-MS peptide mapping data demonstrated that the purified murine DNA methyltransferase protein contains the N-terminal regions predicted by the recently revised 5' gene sequences (Yoder, J. A., Yen, R.-W. C., Vertino, P. M., Bestor, T. H. , and Baylin, S. B. (1996) J. Biol. Chem. 271, 31092-31097). The evidence suggests a start of translation at the first predicted methionine, with no alternate translational start sites. Our peptide mapping results provide a more detailed structural characterization of the DNA methyltransferase that will facilitate future structure/function studies.
Collapse
Affiliation(s)
- J F Glickman
- Program in Biochemistry and Molecular Biology and Department of Chemistry, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
6
|
Halmer L, Gruss C. Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication. Nucleic Acids Res 1996; 24:1420-7. [PMID: 8628673 PMCID: PMC145815 DOI: 10.1093/nar/24.8.1420] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have reconstituted salt-treated SV40 minichromosomes with differentially phosphorylated forms of histone H1 extracted from either G0-, S- or M-phase cells. Sedimentation studies revealed a clear difference between minichromosomes reconstituted with S-phase histone H1 compared with histone H1 from G0- or M-phase cells, indicating that the phosphorylation state of histone H1 has a direct effect on chromatin structure. Using reconstituted minichromosomes as substrate in the SV40 in vitro replication system, we measured a higher replication efficiency for SV40 minichromosomes reconstituted with S-phase histone H1 compared with G0- or M-phase histone H1. These data indicate that the chromatin structure induced by the phosphorylation of histone H1 influences the replication efficiency of SV40 minichromosomes in vitro.
Collapse
Affiliation(s)
- L Halmer
- Division of Biology, Universität Konstanz, Germany
| | | |
Collapse
|
7
|
Affiliation(s)
- D Poccia
- Department of Biology, Amherst College, Massachusetts 01002, USA
| | | |
Collapse
|
8
|
Takeuchi H, Sasamori J. Structural modification of DNA by a DNA-binding motif SPKK: detection of changes in base-pair hydrogen bonding and base stacking by UV resonance Raman spectroscopy. Biopolymers 1995; 35:359-67. [PMID: 7711276 DOI: 10.1002/bip.360350403] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interactions of a DNA-binding motif SPKK with polynucleotides have been investigated by uv resonance Raman spectroscopy. Analysis of the Raman spectra has shown that the tetrapeptide SPKK weakens the adenine-thymine base-pair hydrogen bonding in poly(dA-dT).poly(dA-dT) and reduces the adenine-adenine base stacking interactions in poly(dA).poly(dT), both effects being indicative of destabilization of the DNA double helical structure. On the other hand, poly(dG-dC).poly(dG-dC) and poly(dG).poly(dC) do not show any structural change in the presence of SPKK. The present observations confirm that the SPKK motif, which is frequently found in histone H1 proteins, specifically binds to A/T-rich regions of DNA and loosens the DNA double-helical structure. One of the roles of the SPKK motifs in histones may be to increase DNA flexibility so that DNA can wrap around core histones and be assembled into chromosomes more easily.
Collapse
Affiliation(s)
- H Takeuchi
- Pharmaceutical Institute, Tohoku University, Japan
| | | |
Collapse
|
9
|
Affiliation(s)
- M P Williamson
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| |
Collapse
|
10
|
Bailly F, Bailly C, Colson P, Houssier C, Hénichart JP. A tandem repeat of the SPKK peptide motif induces psi-type DNA structures at alternating AT sequences. FEBS Lett 1993; 324:181-4. [PMID: 8508919 DOI: 10.1016/0014-5793(93)81389-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interaction between a tandem repeat of the SPKK peptide motif and calf thymus DNA or several polynucleotides has been investigated by circular dichroism. The octapeptide SPKKSPKK does not induce any important changes in the CD spectra of the polynucleotides poly(dG).poly(dC), poly(dG-dC).poly(dG-dC) and poly(dA).poly(dT) while the spectrum of calf thymus DNA is slightly modified. Binding of this basic peptide to the alternating copolymer poly(dA-dT).poly(dA-dT) results in a marked psi-type condensation in a manner similar to that induced by the entire C-terminal domain of histone H1.
Collapse
Affiliation(s)
- F Bailly
- INSERM Unité 124, Institut de Recherches sur le Cancer, Lille, France
| | | | | | | | | |
Collapse
|
11
|
Abstract
The nucleosomal DNA repeat of 240 base pairs in the chromatin structure of sea urchin sperm is exceptionally long and is accompanied by the presence of a histone H1 molecule larger than is usual in most species of chromatin. I propose how these two features are correlated and how they fit into the solenoidal model for the 300-A-diameter fiber of chromatin. Comparison of the sequence of spermatogenous H1 with other H1 sequences reveals an insert of 55 amino acid residues (residues 122-176). A 37-residue sequence in the insert (residues 140-176) has a palindromic character. I propose that each half of the palindromic sequence constitutes an alpha-helical DNA-binding unit and that the continuous alpha-helix made up of the two halves, by virtue of its palindromic nature, stabilizes the formation of an extra superhelical turn by the long linker DNA between two nucleosome cores. The N-terminal-C-terminal "polarity" of each alpha-helical section of half the palindromic sequence indicates how the arginine/lysine-rich DNA-binding surface of the alpha-helical section is used. The polarity of the H1 insertion sequence supports the so-called "reverse-loop" model or a "figure-eight" model for the path of the DNA within the solenoid structure; i.e., the linker DNA forms a right-handed superhelical turn toward the center of the solenoid structure. This use of a pair of a palindromically related alpha-helical sections has a similarity with the "scissors-grip" model for the interaction of the leucine-zipper proteins with DNA.
Collapse
Affiliation(s)
- M Suzuki
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
12
|
Han KK, Martinage A. Possible relationship between coding recognition amino acid sequence motif or residue(s) and post-translational chemical modification of proteins. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1349-63. [PMID: 1426517 DOI: 10.1016/0020-711x(92)90060-e] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The "code-sequence" of N-glycosylation site(s), the amino acids located around O-glycosylation site(s), the sequence motifs of several kinases, the sequence motifs of--sulfation, amidation, isoprenylation, myristoylation, palmitoylation and N-acetylation, Aspartic and Asparagine hydroxylation-site, gamma-carboxyglutamate domain, phosphopantetheine attachment site etc. are extensively listed, compared to those reported by "PROSITE" Computer Screen Center and discussed. 2. The structural aspects of protein-DNA recognition are quoted as discussion and conclusion.
Collapse
Affiliation(s)
- K K Han
- Unité INSERM N. 16, Lille, France
| | | |
Collapse
|
13
|
Heads RJ, Carpenter BG, Rickenberg HV, Chambers TC. The lysine-rich H1 histones from the slime moulds, Physarum polycephalum and Dictyostelium discoideum lack phosphorylation sites recognised by cyclic AMP-dependent protein kinase in vitro. FEBS Lett 1992; 306:66-70. [PMID: 1321059 DOI: 10.1016/0014-5793(92)80839-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calcium chloride-extracted histones were prepared from nuclei of the slime moulds, Physarum polycephalum and Dictyostelium discoideum, and phosphorylation by purified preparations of cyclic AMP-dependent protein kinase (cAMP-d PK) and growth-associated H1 histone kinase (HKG) examined and compared. Among the major histone fractions and other proteins in the two preparations, the H1 histones from both organisms were found to be effective and exclusive substrates for HKG. cAMP-d PK, which phosphorylates mammalian H1 histone and certain, in particular H2B, of the mammalian core histones, phosphorylated several of the core histones from both slime moulds but did not phosphorylate H1 histone from either. The slime mould H1s remained ineffective substrates for cAMP-d PK even after extensive alkaline phosphatase treatment of the histone preparations. Additional studies demonstrated that the lack of slime mould H1 phosphorylation by cAMP-d PK was not due to competition of the H1 molecules with the core histones for the kinase. Our studies suggest that H1 histones from these organisms, whilst clearly containing sites for phosphorylation by HKG, apparently lack phosphorylation sites recognised by cAMP-d PK. Thus, the mediation of specific nuclear functions by cAMP-dependent phosphorylation of H1 in higher organisms may not occur or be required in these lower eukaryotes.
Collapse
Affiliation(s)
- R J Heads
- Biophysics Section, School of Biological Sciences, Portsmouth Polytechnic, UK
| | | | | | | |
Collapse
|
14
|
Abstract
Two species of histones in sea urchin sperm (Sp H1 and Sp H2B) are chimeric molecules whose highly basic amino-terminal domains are dephosphorylated at the last stage of sperm cell differentiation, and rephosphorylated immediately following fertilization. The phosphorylated regions consist largely of repeating tetrapeptides with two basic residues flanking Ser-Pro residues ('SPKK' motifs) and are predicted to have beta-turn secondary structures. Alteration of the charge and structure of the SPKK sites may play a role in the unusually dense DNA packaging of the mature sperm chromatin. The motif resembles the target site of cell-cycle-associated cdc2 kinases and is found in several other proteins whose nucleic acid affinities may be altered during the cell cycle.
Collapse
Affiliation(s)
- D L Poccia
- Department of Biology, Amherst College, MA 01002
| | | |
Collapse
|
15
|
|