1
|
Gross D. Thromboembolic Phenomena and the use of the Pig as an Appropriate Animal Model for Research on Cardiovascular Devices. Int J Artif Organs 2018. [DOI: 10.1177/039139889702000402] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- D.R. Gross
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign - USA
| |
Collapse
|
2
|
Mawatwal S, Behura A, Ghosh A, Kidwai S, Mishra A, Deep A, Agarwal S, Saha S, Singh R, Dhiman R. Calcimycin mediates mycobacterial killing by inducing intracellular calcium-regulated autophagy in a P2RX7 dependent manner. Biochim Biophys Acta Gen Subj 2017; 1861:3190-3200. [PMID: 28935606 DOI: 10.1016/j.bbagen.2017.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
Phenotypic screening led to the identification of calcimycin as a potent inhibitor of Mycobacterium bovis BCG (M. bovis BCG) growth in vitro and in THP-1 cells. In the present study, we aim to decipher the mechanism of antimycobacterial activity of calcimycin. We noticed that treatment with calcimycin led to up-regulation of different autophagy markers like Beclin-1, autophagy-related gene (Atg) 7, Atg 3 and enhanced microtubule-associated protein 1A/1B-light chain 3-I (LC3-I) to LC3-II conversion in macrophages. This calcimycin-mediated killing of intracellular M. smegmatis and M. bovis BCG was abrogated in the presence of 3-methyladenine (3-MA). We also demonstrate that calcimycin binding with purinergic receptor P2X7 (P2RX7) led to increase in intracellular calcium level that regulates the extracellular release of ATP. ATP was able to regulate calcimycin-induced autophagy through P2RX7 in an autocrine fashion. Blocking of either P2RX7 expression by 1-[N,O-bis(5-Isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-62) or reducing intracellular calcium levels by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy-methyl) ester (BAPTA-AM) abrogated the antimycobacterial activity of calcimycin. Taken together, these results showed that calcimycin exerts its antimycobacterial effect by regulating intracellular calcium-dependent ATP release that induces autophagy in a P2RX7 dependent manner.
Collapse
Affiliation(s)
- Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abhirupa Ghosh
- Bioinformatics Centre, Bose Institute, Kolkata 700054, West Bengal, India
| | - Saqib Kidwai
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amar Deep
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Sakshi Agarwal
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, Kolkata 700054, West Bengal, India
| | - Ramandeep Singh
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
3
|
Experimental Procedures for Demonstration of MicroRNA Mediated Enhancement of Functional Neuroprotective Effects of Estrogen Receptor Agonists. Methods Mol Biol 2016. [PMID: 26585150 DOI: 10.1007/978-1-4939-3127-9_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Protection of motoneurons is an important therapeutic goal in the treatment of neurological disorders. Recent reports have suggested that specific microRNAs (miRs) could modulate the expression of particular proteins for significant alterations in the pathogenesis of different neurological disorders. Thus, combination of overexpression of a specific neuroprotective miR and treatment with a neuroprotective agent could be a novel strategy for functional protection of motoneurons. The protocols described herein demonstrate that miR-7-1, a neuroprotective miR, can enhance the functional neuroprotective effects of estrogen receptor agonists such as 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), Way 200070 (WAY), and estrogen (E2) in preventing apoptosis in A23187 calcium ionophore (CI) exposed VSC4.1 motoneurons. This article describes the protocols for the cell viability assay, transfection of VSC4.1 motoneurons with miRs, Annexin V/propidium iodide staining for apoptosis, Western blotting, patch-clamp recording of whole-cell membrane potential, and JC-1 staining for detection of mitochondrial membrane potential. Taken together, these protocols are used to demonstrate that miR-7-1 caused significant enhancement of the efficacy of estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons.
Collapse
|
4
|
Chakrabarti M, Banik NL, Ray SK. MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons. Neuroscience 2014; 256:322-33. [PMID: 24157932 PMCID: PMC4378839 DOI: 10.1016/j.neuroscience.2013.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023]
Abstract
Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI.
Collapse
Affiliation(s)
- M Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - N L Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - S K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
5
|
Torrente D, Mendes-da-Silva RF, Lopes AAC, González J, Barreto GE, Guedes RCA. Increased calcium influx triggers and accelerates cortical spreading depression in vivo in male adult rats. Neurosci Lett 2013; 558:87-90. [PMID: 24246901 DOI: 10.1016/j.neulet.2013.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/26/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022]
Abstract
Cortical spreading depression (CSD) is a depolarization wave associated with neurological disorders such as migraine, cerebral ischemia and traumatic brain injury. The mechanism of action of this phenomenon still remains unclear. Although it is suggested that extracellular K(+) accumulation contributes to CSD, other ions may play a relevant role in the mechanism of propagation of the wave. In this context, we hypothesize that Ca(2+) may play an important function in the wave propagation. Our results demonstrate that enhancing Ca(2+) influx into the cells by topical cortical application of the ionophore A23187 (10 μM, 50 μM and 100 μM solutions) increases the velocity of CSD propagation in a dose-dependent manner, and a much higher dose of this compound (2 mM) triggers CSD. In conclusion, increased Ca(2+) influx can be a key element in the induction mechanism of the CSD, and should be assessed in further experimental strategies targeting brain disorders related to CSD.
Collapse
Affiliation(s)
- Daniel Torrente
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | | | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Rubem Carlos Araújo Guedes
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
6
|
Barodka V, Mohanty JG, Mustafa AK, Santhanam L, Nyhan A, Bhunia AK, Sikka G, Nyhan D, Berkowitz DE, Rifkind JM. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability. Transfusion 2013; 54:434-44. [PMID: 23781865 DOI: 10.1111/trf.12291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/21/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Red blood cell (RBC) deformation is critical for microvascular perfusion and oxygen delivery to tissues. Abnormalities in RBC deformability have been observed in aging, sickle cell disease, diabetes, and preeclampsia. Although nitric oxide (NO) prevents decreases in RBC deformability, the underlying mechanism is unknown. STUDY DESIGN AND METHODS As an experimental model, we used ionophore A23187-mediated calcium influx in RBCs to reduce their deformability and investigated the role of NO donor sodium nitroprusside (SNP) and KCa3.1 (Gardos) channel blockers on RBC deformability (measured as elongation index [EI] by microfluidic ektacytometry). RBC intracellular Ca(2+) and extracellular K(+) were measured by inductively coupled plasma mass spectrometry and potassium ion selective electrode, respectively. RESULTS SNP treatment of RBCs blocked the Ca(2+) (approx. 10 μmol/L)-induced decrease in RBC deformability (EI 0.34 ± 0.02 vs. 0.09 ± 0.01, control vs. Ca(2+) loaded, p < 0.001; and EI 0.37 ± 0.02 vs. 0.30 ± 0.01, SNP vs. SNP plus Ca(2+) loaded) as well as Ca(2+) influx and K(+) efflux. The SNP effect was similar to that observed after pharmacologic blockade of the KCa3.1 channel (with charybdotoxin or extracellular medium containing isotonic K(+) concentration). In RBCs from KCa3.1(-/-) mice, 10 μmol/L Ca(2+) loading did not decrease cellular deformability. A preliminary attempt to address the molecular mechanism of SNP protection suggests the involvement of cell surface thiols. CONCLUSION Our results suggest that nitroprusside treatment of RBCs may protect them from intracellular calcium increase-mediated stiffness, which may occur during microvascular perfusion in diseased states, as well as during RBC storage.
Collapse
Affiliation(s)
- Viachaslau Barodka
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins Hospital; Molecular Dynamics Section, National Institute on Aging, National Institutes of Health; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Van Goethem E, Silva EA, Xiao H, Franc NC. The Drosophila TRPP cation channel, PKD2 and Dmel/Ced-12 act in genetically distinct pathways during apoptotic cell clearance. PLoS One 2012; 7:e31488. [PMID: 22347485 PMCID: PMC3275576 DOI: 10.1371/journal.pone.0031488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Apoptosis, a genetically programmed cell death, allows for homeostasis and tissue remodelling during development of all multi-cellular organisms. Phagocytes swiftly recognize, engulf and digest apoptotic cells. Yet, to date the molecular mechanisms underlying this phagocytic process are still poorly understood. To delineate the molecular mechanisms of apoptotic cell clearance in Drosophila, we have carried out a deficiency screen and have identified three overlapping phagocytosis-defective mutants, which all delete the fly homologue of the ced-12 gene, known as Dmel\ced12. As anticipated, we have found that Dmel\ced-12 is required for apoptotic cell clearance, as for its C. elegans and mammalian homologues, ced-12 and elmo, respectively. However, the loss of Dmel\ced-12 did not solely account for the phenotypes of all three deficiencies, as zygotic mutations and germ line clones of Dmel\ced-12 exhibited weaker phenotypes. Using a nearby genetically interacting deficiency, we have found that the polycystic kidney disease 2 gene, pkd2, which encodes a member of the TRPP channel family, is also required for phagocytosis of apoptotic cells, thereby demonstrating a novel role for PKD2 in this process. We have also observed genetic interactions between pkd2, simu, drpr, rya-r44F, and retinophilin (rtp), also known as undertaker (uta), a gene encoding a MORN-repeat containing molecule, which we have recently found to be implicated in calcium homeostasis during phagocytosis. However, we have not found any genetic interaction between Dmel\ced-12 and simu. Based on these genetic interactions and recent reports demonstrating a role for the mammalian pkd-2 gene product in ER calcium release during store-operated calcium entry, we propose that PKD2 functions in the DRPR/RTP pathway to regulate calcium homeostasis during this process. Similarly to its C. elegans homologue, Dmel\Ced-12 appears to function in a genetically distinct pathway.
Collapse
Affiliation(s)
- Emeline Van Goethem
- Medical Research Council Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Anatomy and Developmental Biology Department, University College London, London, United Kingdom
| | - Elizabeth A. Silva
- Medical Research Council Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Anatomy and Developmental Biology Department, University College London, London, United Kingdom
| | - Hui Xiao
- The Department of Genetics, Affiliated to the Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nathalie C. Franc
- The Department of Genetics, Affiliated to the Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Cuttell L, Vaughan A, Silva E, Escaron CJ, Lavine M, Van Goethem E, Eid JP, Quirin M, Franc NC. Undertaker, a Drosophila Junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 2008; 135:524-34. [PMID: 18984163 DOI: 10.1016/j.cell.2008.08.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/28/2008] [Accepted: 08/19/2008] [Indexed: 01/21/2023]
Abstract
Phagocytosis is important during development and in the immune response for the removal of apoptotic cells and pathogens, yet its molecular mechanisms are poorly understood. In Caenorhabditis elegans, the CED2/5/10/12 pathway regulates actin during phagocytosis of apoptotic cells, whereas the role of the CED1/6/7 pathway in phagocytosis is unclear. We report that Undertaker (UTA), a Drosophila Junctophilin protein, is required for Draper (CED-1 homolog)-mediated phagocytosis. Junctophilins couple Ca2+ channels at the plasma membrane to those of the endoplasmic reticulum (ER), the Ryanodine receptors. We place Draper, its adaptor drCed-6, UTA, the Ryanodine receptor Rya-r44F, the ER Ca2+ sensor dSTIM, and the Ca2+-release-activated Ca2+ channel dOrai in the same pathway that promotes calcium homeostasis and phagocytosis. Thus, our results implicate a Junctophilin in phagocytosis and link Draper-mediated phagocytosis to Ca2+ homeostasis, highlighting a previously uncharacterized role for the CED1/6/7 pathway.
Collapse
Affiliation(s)
- Leigh Cuttell
- Medical Research Council Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ng SW, di Capite J, Singaravelu K, Parekh AB. Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local Ca2+ influx through Ca2+ release-activated Ca2+ channels. J Biol Chem 2008; 283:31348-55. [PMID: 18806259 DOI: 10.1074/jbc.m804942200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol trisphosphate. Inositol trisphosphate raises cytoplasmic Ca2+ concentration by releasing Ca2+ from intracellular stores. This Ca2+ release phase is accompanied by sustained Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels. Here, we find that engagement of IgE receptors activates Syk, and this leads to Ca2+ release from stores followed by Ca2+ influx. The Ca2+ influx phase then sustains Syk activity. The Ca2+ influx pathway activated by these receptors was identified as the CRAC channel, because pharmacological block of the channels with either a low concentration of Gd3+ or exposure to the novel CRAC channel blocker 3-fluoropyridine-4-carboxylic acid (2',5'-dimethoxybiphenyl-4-yl)amide or RNA interference knockdown of Orai1, which encodes the CRAC channel pore, all prevented the increase in Syk activity triggered by Ca2+ entry. CRAC channels and Syk are spatially close together, because increasing cytoplasmic Ca2+ buffering with the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis failed to prevent activation of Syk by Ca2+ entry. Our results reveal a positive feedback step in mast cell activation where receptor-triggered Syk activation and subsequent Ca2+ release opens CRAC channels, and the ensuing local Ca2+ entry then maintains Syk activity. Ca2+ entry through CRAC channels therefore provides a means whereby the Ca2+ and tyrosine kinase signaling pathways can interact with one another.
Collapse
Affiliation(s)
- Siaw Wei Ng
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Bldg., Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | | | |
Collapse
|
11
|
Chang WC, Di Capite J, Singaravelu K, Nelson C, Halse V, Parekh AB. Local Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels stimulates production of an intracellular messenger and an intercellular pro-inflammatory signal. J Biol Chem 2007; 283:4622-31. [PMID: 18156181 DOI: 10.1074/jbc.m705002200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ entry through store-operated Ca2+ channels drives the production of the pro-inflammatory molecule leukotriene C4 (LTC4) from mast cells through a pathway involving Ca2+-dependent protein kinase C, mitogen-activated protein kinases ERK1/2, phospholipase A2, and 5-lipoxygenase. Here we examine whether local Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane stimulates this signaling pathway. Manipulating the amplitude and spatial extent of Ca2+ entry by altering chemical and electrical gradients for Ca2+ influx or changing the Ca2+ buffering of the cytoplasm all impacted on protein kinase C and ERK activation, generation of arachidonic acid and LTC4 secretion, with little change in the bulk cytoplasmic Ca2+ rise. Similar bulk cytoplasmic Ca2+ concentrations were achieved when CRAC channels were activated in 0.25 mm external Ca2+ versus 2 mm Ca2+ and 100 nm La3+, an inhibitor of CRAC channels. However, despite similar bulk cytoplasmic Ca2+, protein kinase C activation and LTC4 secretion were larger in 2 mm Ca2+ and La3+ than in 0.25 mm Ca2+, consistent with the central involvement of a subplasmalemmal Ca2+ rise. The nonreceptor tyrosine kinase Syk coupled CRAC channel opening to protein kinase C and ERK activation. Recombinant TRPC3 channels also activated protein kinase C, suggesting that subplasmalemmal Ca2+ rather than a microdomain exclusive to CRAC channels is the trigger. Hence a subplasmalemmal Ca2+ increase in mast cells is highly versatile in that it triggers cytoplasmic responses through generation of intracellular messengers as well as long distance changes through increased secretion of paracrine signals.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Pain S, Falet H, Saci A, Bachelot-Loza C, Rendu F. Tyrosine phosphorylation and association of FcgammaRII and p72(Syk) are not limited to the FcgammaRII signalling pathway. Cell Signal 2000; 12:165-71. [PMID: 10704823 DOI: 10.1016/s0898-6568(99)00079-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tyrosine kinase p72(Syk) plays a critical role in platelet signal transduction. It associates with the platelet receptor for the Fc domain of IgGs, FcgammaRII, following stimulation by FcgammaRII cross-linking. Here, we show that p72(Syk) and FcgammaRII tyrosine phosphorylation and association occured following platelet stimulation by: (1) two monoclonal antibodies, which form a bridge between a target antigen and FcgammaRII, and (2) the G-protein-coupled receptor agonist thrombin. The kinetics of the p72(Syk)/FcgammaRII association depended on the signalling pathway (i.e., the antigen targeted or the thrombin receptor). We established a direct relationship between the level of FcgammaRII phosphorylation and the detection of its association with p72(Syk). Inhibition of p72(Syk) by piceatannol resulted in partial or total inhibition of FcgammaRII phosphorylation, after immunological activation or addition of thrombin, respectively, suggesting that p72(Syk) participates in FcgammaRII phosphorylation. The results provide evidence that p72(Syk)/FcgammaRII association is not restricted to immunological activation.
Collapse
Affiliation(s)
- S Pain
- U428 INSERM, UFR des Sciences pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75270, Paris, France
| | | | | | | | | |
Collapse
|
13
|
Fuse I, Higuchi W, Uesugi Y, Hattori A, Aizawa Y. Relationship between intracellular calcium-dependent process and protein-tyrosine phosphorylation in human platelets: studies of platelets from a patient with defective A23187-induced platelet aggregation. CLINICAL AND LABORATORY HAEMATOLOGY 1999; 21:29-32. [PMID: 10197260 DOI: 10.1046/j.1365-2257.1999.00176.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We had postulated that in a patient with defective calcium ionophore (A23187)-induced platelet aggregation, whose platelets showed normal intracellular Ca2+ mobilization in either the presence or absence of extracellular Ca2+ in response to A23187. A defect was present in an intracellular calcium-dependent process. We have now investigated whether the agonist-induced protein-tyrosine phosphorylation (PTP) was altered. Protein-tyrosine phosphorylation (PTP)-induced by A23187 in the patient's platelets was greatly diminished but that induced by thrombin was almost normal. These results suggest that an intracellular calcium-dependent process plays a fundamental role in A23187-induced PTP, whereas it does not in thrombin-induced PTP.
Collapse
Affiliation(s)
- I Fuse
- First Department of Internal Medicine, Niigata University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Brunati AM, James P, Guerra B, Ruzzene M, Donella-Deana A, Pinna LA. The spleen protein-tyrosine kinase TPK-IIB is highly similar to the catalytic domain of p72syk. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:400-7. [PMID: 8841405 DOI: 10.1111/j.1432-1033.1996.0400h.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
TPK-IIB is a protein kinase that is predominant in the cytosol of spleen and is characterized by a high specific activity toward acidic peptide substrates and a low auto-phosphorylation activity. A prominent 52-kDa component purifies with the kinase [Marin, O., Donella-Deana, A., Brunati, A. M., Fischer, S. & Pinna, L. A. (1991) J. Biol. Chem. 266, 17798-17803]. Here we demonstrate that the 52-kDa protein displays sequence identity with the Miller-Dieker lissencephaly protein (LIS 1). The protein is not related to any known protein kinase and lacks an ATP-binding motif. The ATP binding and phosphotransferase activities of TPK-IIB can be fully accounted for by a minor 38-kDa protein band (p38/TPK-IIB) which can be separated from the 52-kDa protein by Mono-Q/FPLC in the presence of EDTA. Sequence analysis of p38/TPK-IIB reveals a high level of similarity, if not identity, with the catalytic domain of p72syk, a protein-tyrosine kinase implicated in the activation of hematopoietic cells. Antibodies raised against the catalytic domain of p72syk, but not antibodies raised against its N-terminal segment, cross-react with p38/TPK-IIB. The peptide substrate specificity of p72syk is almost identical to that of p38/TPK-IIB, which also supports the classification of TPK-IIB as a close relative (possibly a proteolytic or alternative spliced form) of p72syk. p38/TPK-IIB, however, exhibits a specific activity which is sixfold higher than that of p72syk and appears to be 50-fold more sensitive to inhibition by heparin. Thus, the observation that Ca(2+)-dependent degradation of p72syk by particulate fraction of rat spleen is accompanied by increased catalytic activity and increased sensitivity to heparin would be consistent with the possibility that hyperactive p38/TPK-IIB might be proteolytically generated from p72syk in response to an increase of intracellular Ca2+.
Collapse
Affiliation(s)
- A M Brunati
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Yanaga F, Poole A, Asselin J, Blake R, Schieven GL, Clark EA, Law CL, Watson SP. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc gamma-IIA receptor. Biochem J 1995; 311 ( Pt 2):471-8. [PMID: 7487883 PMCID: PMC1136023 DOI: 10.1042/bj3110471] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of human platelets by cross-linking of the platelet low-affinity IgG receptor, the Fc gamma receptor IIA (Fc gamma-RIIA), or by collagen is associated with rapid phosphorylation on tyrosine of the non-receptor tyrosine kinase syk. Phosphorylation is still observed, albeit sometimes reduced, in the presence of a combination of a protein kinase C inhibitor, Ro 31-8220, and the intracellular calcium chelator, BAPTA-AM, demonstrating independence from phosphoinositide-specific phospholipase C (PLC) activity. In contrast, the combination of Ro 31-8220 and BAPTA-AM completely inhibits phosphorylation of syk in thrombin-stimulated platelets. Phosphorylation of syk increases its autophosphorylation activity measured in a kinase assay performed on syk immunoprecipitates. Fc gamma-RIIA also undergoes phosphorylation in syk immunoprecipitates from platelets activated by cross-linking of Fc gamma-RIIA but not by collagen, suggesting that it associates with the kinase. Consistent with this, tyrosine-phosphorylated Fc gamma-RIIA is precipitated by a glutathione S-transferase (GST) fusion protein containing the tandem src homology (SH2) domains of syk from Fc gamma-RIIA- but not collagen-activated cells. Two uncharacterized tyrosine-phosphorylated proteins of 40 and 65 kDa are uniquely precipitated by a GST fusion protein containing the tandem syk-SH2 domains in collagen-stimulated platelets. A peptide based on the antigen recognition activation motif (ARAM) of Fc gamma-RIIA, and phosphorylated on the two tyrosine residues found within this region, selectively binds syk from lysates of resting platelets; this interaction is not seen with a non-phosphorylated peptide. Kinase assays on Fc gamma-RIIA immunoprecipitates reveal the constitutive association of an unidentified kinase activity in resting cells which phosphorylates a 67 kDa protein. Syk is not detected in Fc gamma-RIIA immunoprecipitates from resting cells but associates with the receptor following activation and, together with Fc gamma-RIIA, is phosphorylated in the kinase assay in vitro. These results demonstrate that syk is activated by Fc gamma-RIIA cross-linking and collagen, independent of PLC, suggesting that it may have an important role in the early events associated with platelet activation. The association of syk with Fc gamma-RIIA appears to be mediated through the tandem SH2 domains in syk and the ARAM motif of Fc gamma-RIIA. A similar interaction may underlie the response to collagen, suggesting that its signalling receptor contains an ARAM motif.
Collapse
Affiliation(s)
- F Yanaga
- Department of Pharmacology, University of Oxford, U.K
| | | | | | | | | | | | | | | |
Collapse
|