1
|
Wang W, Cui T, Zhang F, Xue Z, Zhang B, Liu X. Functional Analysis of the C-5 Sterol Desaturase PcErg3 in the Sterol Auxotrophic Oomycete Pathogen Phytophthora capsici. Front Microbiol 2022; 13:811132. [PMID: 35651492 PMCID: PMC9151008 DOI: 10.3389/fmicb.2022.811132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Although sterols play an important role in most eukaryotes, some oomycetes, including Phytophthora spp., have lost the sterol synthesis pathway. Nevertheless, the ERG3 gene encoding C-5 sterol desaturase in the sterol synthesis pathway is still present in the genomes of Phytophthora spp. Phytophthora capsici, a destructive pathogen with a broad range of plant hosts, poses a significant threat to the production of agriculture. This study focused on the ERG3 gene in P. capsici (PcERG3) and explored its function in this pathogen. It showed that the PcERG3 gene could be expressed in all tested developmental stages of P. capsici, with sporangium and mycelium displaying higher expression levels. A potential substrate of Erg3 (stellasterol) was used to treat the P. capsici wild-type strain and a PcERG3Δ transformant, and their sterol profiles were determined by GC-MS. The wild-type strain could convert stellasterol into the down-stream product while the transformant could not, indicating that PcErg3 retains the C-5 sterol desaturase activity. By comparing the biological characteristics of different strains, it was found that PcERG3 is not important for the development of P. capsici. The pathogenicity of the PcERG3Δ transformants and the wild-type strain was comparable, suggesting that PcERG3 is not necessary for the interaction between P. capsici and its hosts. Further investigations revealed that the PcERG3Δ transformants and the wild-type strain displayed a similar level of tolerance to external adversities such as unsuitable temperatures, high osmotic pressures, and intemperate pH, signifying that PcERG3 is not essential for P. capsici to cope with these environmental stresses.
Collapse
Affiliation(s)
- Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tongshan Cui
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Borui Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Venegas M, Barahona S, González AM, Sepúlveda D, Zúñiga GE, Baeza M, Cifuentes V, Alcaíno J. Phenotypic Analysis of Mutants of Ergosterol Biosynthesis Genes ( ERG3 and ERG4) in the Red Yeast Xanthophyllomyces dendrorhous. Front Microbiol 2020; 11:1312. [PMID: 32612595 PMCID: PMC7309136 DOI: 10.3389/fmicb.2020.01312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid used in aquaculture. Astaxanthin is synthesized from metabolites of the mevalonate pathway, which are also precursors for sterols biosynthesis. The interruption of the CYP61 gene, which is involved in the synthesis of ergosterol (mutant CBS.cyp61 -), resulted in a phenotype that overproduces carotenoids due to the activation of the SREBP pathway. In this work, we constructed other mutants of ergosterol biosynthesis in this yeast to evaluate whether they have the same phenotype as mutant CBS.cyp61 -. By bioinformatic analysis, the ERG3 and ERG4 genes of X. dendrorhous were identified, and each gene was deleted in the wild-type strain. Mutants CBS.Δerg3 and CBS.Δerg4 did not produce ergosterol; CBS.Δerg3 primarily accumulated episterol, and CBS.Δerg4 primarily accumulated ergosta-5,7,22,24(28)-tetraenol. The transcription levels of the HMGS gene of the mevalonate pathway were evaluated by RT-qPCR, which showed a slight increase in CBS.Δerg4, but the transcription levels were still 10-fold lower than in strain CBS.cyp61 -. Both CBS.Δerg3 and CBS.Δerg4 did not overproduce carotenoids, even though they do not produce ergosterol. Thus, the results of this study indicate that the absence of ergosterol does not activate the SREBP pathway in X. dendrorhous, but rather it depends on other alterations in sterol composition.
Collapse
Affiliation(s)
- Maximiliano Venegas
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ana María González
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gustavo E. Zúñiga
- Departamento de Biología, Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Johnston EJ, Moses T, Rosser SJ. The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast 2020; 37:27-44. [PMID: 31800968 DOI: 10.1002/yea.3452] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
Yeast strains have been used extensively as robust microbial cell factories for the production of bulk and fine chemicals, including biofuels (bioethanol), complex pharmaceuticals (antimalarial drug artemisinin and opioid pain killers), flavours, and fragrances (vanillin, nootkatone, and resveratrol). In many cases, it is of benefit to suppress or modify ergosterol biosynthesis during strain engineering, for example, to increase thermotolerance or to increase metabolic flux through an alternate pathway. However, the impact of modifying ergosterol biosynthesis on engineered strains is discussed sparsely in literature, and little attention has been paid to the implications of these modifications on the general health and well-being of yeast. Importantly, yeast with modified sterol content exhibit a wide range of phenotypes, including altered organization and dynamics of plasma membrane, altered susceptibility to chemical treatment, increased tolerance to high temperatures, and reduced tolerance to other stresses such as high ethanol, salt, and solute concentrations. Here, we review the wide-ranging phenotypes of viable Saccharomyces cerevisiae strains with altered sterol content and discuss the implications of these for yeast as microbial cell factories.
Collapse
Affiliation(s)
- Emily J Johnston
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tessa Moses
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Levisson M, Araya-Cloutier C, de Bruijn WJC, van der Heide M, Salvador López JM, Daran JM, Vincken JP, Beekwilder J. Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13478-13486. [PMID: 31016981 PMCID: PMC6909231 DOI: 10.1021/acs.jafc.9b01367] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Prenylated flavonoids possess a wide variety of biological activities, including estrogenic, antioxidant, antimicrobial, and anticancer activities. Hence, they have potential applications in food products, medicines, or supplements with health-promoting activities. However, the low abundance of prenylated flavonoids in nature is limiting their exploitation. Therefore, we investigated the prospect of producing prenylated flavonoids in the yeast Saccharomyces cerevisiae. As a proof of concept, we focused on the production of the potent phytoestrogen 8-prenylnaringenin. Introduction of the flavonoid prenyltransferase SfFPT from Sophora flavescens in naringenin-producing yeast strains resulted in de novo production of 8-prenylnaringenin. We generated several strains with increased production of the intermediate precursor naringenin, which finally resulted in a production of 0.12 mg L-1 (0.35 μM) 8-prenylnaringenin under shake flask conditions. A number of bottlenecks in prenylated flavonoid production were identified and are discussed.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Carla Araya-Cloutier
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Wouter J. C. de Bruijn
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Menno van der Heide
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - José Manuel Salvador López
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Jean-Marc Daran
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Jules Beekwilder
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| |
Collapse
|
5
|
An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab Eng 2017; 40:165-175. [DOI: 10.1016/j.ymben.2017.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/13/2017] [Accepted: 02/14/2017] [Indexed: 11/23/2022]
|
6
|
Jaenicke LA, Brendebach H, Selbach M, Hirsch C. Yos9p assists in the degradation of certain nonglycosylated proteins from the endoplasmic reticulum. Mol Biol Cell 2011; 22:2937-45. [PMID: 21737688 PMCID: PMC3154888 DOI: 10.1091/mbc.e10-10-0832] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The lectin Yos9p is a subunit of the HRD ligase that partakes in the degradation of aberrant glycoproteins from the ER. We demonstrate that a variant of Yos9p that has lost its ability to bind glycans enhances the elimination of non-glycosylated substrates indicating that Yos9p has an additional role in the degradation of non-glycosylated proteins. The HRD ubiquitin ligase recognizes and ubiquitylates proteins of the endoplasmic reticulum that display structural defects. Here, we apply quantitative proteomics to characterize the substrate spectrum of the HRD complex. Among the identified substrates is Erg3p, a glycoprotein involved in sterol synthesis. We characterize Erg3p and demonstrate that the elimination of Erg3p requires Htm1p and Yos9p, two proteins that take part in the glycan-dependent turnover of aberrant proteins. We further show that the HRD ligase also mediates the breakdown of Erg3p and CPY* engineered to lack N-glycans. The degradation of these nonglycosylated substrates is enhanced by a mutant variant of Yos9p that has lost its affinity for oligosaccharides, indicating that Yos9p has a previously unrecognized role in the quality control of nonglycosylated proteins.
Collapse
Affiliation(s)
- Laura A Jaenicke
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
7
|
Mo C, Valachovic M, Bard M. The ERG28-encoded protein, Erg28p, interacts with both the sterol C-4 demethylation enzyme complex as well as the late biosynthetic protein, the C-24 sterol methyltransferase (Erg6p). Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:30-6. [PMID: 15522820 DOI: 10.1016/j.bbalip.2004.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/16/2004] [Accepted: 08/03/2004] [Indexed: 11/30/2022]
Abstract
In Saccharomyces cerevisiae, the C-24 sterol methyltransferase (Erg6p) converts zymosterol to fecosterol, an enzymatic step following C-4 demethylation of 4,4-dimethylzymosterol. Our previous study showed that an endoplasmic reticulum (ER) transmembrane protein, Erg28p, functions as a scaffold to tether the C-4 demethylation enzymatic complex (Erg25p-Erg26p-Erg27p) to the ER. To determine whether Erg28p also interacts with other ergosterol biosynthetic proteins, we compared protein levels of Erg3p, Erg6p, Erg7p, Erg11p and Erg25p in three pairs of erg28 and ERG28 strains. In erg28 strains, the Erg6p level in the ER fraction was decreased by about 50% relative to the wild-type strain, while ER protein levels of the four other ergosterol proteins showed no significant differences. Co-immunoprecipitation experiments, using an erg28 strain transformed with the epitope-tagged plasmid pERG28-HA and proteins detected with anti-HA and anti-Erg6p antibodies, indicated that Erg6p and Erg28p reciprocally co-immunoprecipitate. Further, the split ubiquitin yeast membrane two-hybrid system designed to detect protein interactions between membrane bound proteins also indicated an Erg28p-Erg6p interaction when pERG6-Cub was used as the bait and pERG28-NubG was used as the prey. We conclude that Erg28p may not only anchor the C-4 demethylation enzyme complex to the ER but also acts as a protein bridge to the Erg6p enzyme required for the next ergosterol biosynthetic step.
Collapse
Affiliation(s)
- Caiqing Mo
- Biology Department, Indiana University-Purdue University Indianapolis, 723 W. Michigan St, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
8
|
Zweytick D, Hrastnik C, Kohlwein SD, Daum G. Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, erg4p, from the yeast saccharomyces cerevisiae. FEBS Lett 2000; 470:83-7. [PMID: 10722850 DOI: 10.1016/s0014-5793(00)01290-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast ERG4 gene encodes sterol C-24(28) reductase which catalyzes the final step in the biosynthesis of ergosterol. Deletion of ERG4 resulted in a complete lack of ergosterol and accumulation of the precursor ergosta-5,7,22,24(28)-tetraen-3beta-ol. An erg4 mutant strain exhibited pleiotropic defects such as hypersensitivity to divalent cations and a number of drugs such as cycloheximide, miconazole, 4-nitroquinoline, fluconazole, and sodium dodecyl sulfate. Similar to erg6 mutants, erg4 mutants are sensitive to the Golgi-destabilizing drug brefeldin A. Enzyme activity measurements with isolated subcellular fractions revealed that Erg4p is localized to the endoplasmic reticulum. This view was confirmed in vivo by fluorescence microscopy of a strain expressing a functional fusion of Erg4p to enhanced green fluorescent protein. We conclude that ergosterol biosynthesis is completed in the endoplasmic reticulum, and the final product is supplied from there to its membranous destinations.
Collapse
Affiliation(s)
- D Zweytick
- Institut für Biochemie und Lebensmittelchemie, Technische Universität and SFB Biomembrane Research Center, Petersgasse 12/2, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
9
|
Lemmens IH, Kas K, Merregaert J, Van de Ven WJ. Identification and molecular characterization of TM7SF2 in the FAUNA gene cluster on human chromosome 11q13. Genomics 1998; 49:437-42. [PMID: 9615229 DOI: 10.1006/geno.1998.5296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report, the identification and molecular characterization of a novel gene, designated TM7SF2, is reported. This gene was found in the FAU neighboring area (FAUNA) to which other genes have been mapped previously. The FAUNA gene cluster is located at chromosome 11q13 between landmarks H4B and D11S2196E. The TM7SF2 gene contains eight coding exons, and their splice site consensus sequences are consistent with AG/GT rule. Northern blot analysis with a cDNA probe corresponding to TM7SF2 revealed varying expression levels of a 1.7-kb transcript in adult human heart, brain, pancreas, lung, liver, skeletal muscle, kidney, ovary, prostate, and testis, but no detectable expression in placenta, spleen, thymus, small intestine, colon (mucosal lining), or peripheral blood leukocytes. The open reading frame in the cDNA sequence codes for a protein of 590 amino acids that is rich in glycine (23%) and arginine (17%) residues in its amino-terminal half and contains seven transmembrane domains in its carboxy-terminal half. The transmembrane region of the putative TM7SF2 protein shows amino acid sequence similarity to those of the lamin B receptor and the C14/C24 sterol reductase.
Collapse
Affiliation(s)
- I H Lemmens
- Laboratory for Molecular Oncology, KU Leuven, Belgium
| | | | | | | |
Collapse
|
10
|
Venkatramesh M, Guo DA, Jia Z, Nes WD. Mechanism and structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine:delta 24(25)-sterol methyl transferase from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1299:313-24. [PMID: 8597586 DOI: 10.1016/0005-2760(95)00218-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism of action and active site of the enzyme (S)-adenosyl-L-methionine:delta 24(25)-sterol methyl transferase (SMT) from Saccharomyces cerevisiae strain GL7 have been probed with AdoMet, (S)-adenosyl-L-homocysteine, a series of 35 sterol substrates as acceptor molecules and a series of 10 substrate and high energy intermediate (HEI) sterol analogues as inhibitors of biomethylation. The SMT was found to be selective for sterol, both regio- and stereochemically. The presence of an unhindered 24,25-bond, an equatorially-oriented polar group at C-3 (which must act as a proton acceptor) attached to a planar nucleus and a freely rotating side chain were obligatory structural features for sterol binding/catalysis; no essential requirement or significant harmful effects could be found for the introduction of an 8(9)-bond, 14 alpha-methyl or 9 beta,19-cyclopropyl group. Alternatively, methyl groups at C-4 prevented productive sterol binding to the SMT. Initial velocity, product inhibition, and dead-end experiments demonstrated a rapid-equilibrium random bi bi mechanism. Deuterium isotope effects developed from SMT assays containing mixtures of [3-3H]zymosterol with AdoMet or [methyl-2H3]AdoMet confirmed the operation of a random mechanism, kappa H/kappa D = 1.3. From this combination of results, the spatial relationship of the sterol substrate to AdoMet could be approximated and the topology of the sterol binding to the SMT thereby formulated.
Collapse
Affiliation(s)
- M Venkatramesh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, 79409-1061 USA
| | | | | | | |
Collapse
|
11
|
Nes W, Janssen G, Bergenstrahle A. Structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine:delta 24(25)-sterol methyl transferase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98604-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Takeo K. Plasma membrane structures of Saccharomyces cerevisiae and Candida albicans revealed by freeze-fracturing before and after treatment with filipin. FEMS Microbiol Lett 1985. [DOI: 10.1111/j.1574-6968.1985.tb01568.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Abstract
Various nystatin-resistant mutants defective in S-adenosylmethionine: delta 24-sterol-C-methyltransferase (EC 2.1.1.41) were shown to possess alleles of the same gene, erg6. The genetic map location of erg6 was shown to be close to trp1 on chromosome 4. Despite the single locus for erg6, S-adenosylmethionine: delta 24-sterol-C-methyltransferase enzyme activity was found in three separate fractions: mitochondria, microsomes, and the "floating lipid layer." The amount of activity in each fraction could be manipulated by assay conditions. The lipids and lipid synthesis of mutants of Saccharomyces cerevisiae defective in the delta 24-sterol-C-methyltransferase were compared with a C5(6) desaturase mutant and parental wild types. No ergosterol (C28 sterol) could be detected in whole-cell sterol extracts of the erg6 mutants, the limits of detection being less than 10(-11) mol of ergosterol per 10(8) cells. The distribution of accumulated sterols by these mutants varied with growth phase and between free and esterified fractions. The steryl ester concentrations of the mutants were eight times higher than those of the wild type from exponential growth samples. However, the concentration of the ester accumulated by the mutants was not as great in stationary-phase cells. Whereas the head group phospholipid composition was the same between parental and mutant strains, strain-dependent changes in fatty acids were observed, most notably a 40% increase in the oleic acid content of phosphatidylethanolamine of one erg6 mutant, JR5.
Collapse
|
14
|
Hata S, Nishino T, Ariga N, Katsuki H. Effect of detergents on sterol synthesis in a cell-free system of yeast. J Lipid Res 1982. [DOI: 10.1016/s0022-2275(20)38082-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Hata S, Nishino T, Komori M, Katsuki H. Involvement of cytochrome P-450 in delta 22-desaturation in ergosterol biosynthesis of yeast. Biochem Biophys Res Commun 1981; 103:272-7. [PMID: 7032523 DOI: 10.1016/0006-291x(81)91689-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|