1
|
Palaksha, Shakunthala V. Variations in the esterase expression pattern with respect to different light regimes in Drosophila agumbensisand Drosophila nagarholensis. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1026677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Good RT, Gramzow L, Battlay P, Sztal T, Batterham P, Robin C. The molecular evolution of cytochrome P450 genes within and between drosophila species. Genome Biol Evol 2014; 6:1118-34. [PMID: 24751979 PMCID: PMC4040991 DOI: 10.1093/gbe/evu083] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change.
Collapse
Affiliation(s)
- Robert T Good
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Lydia Gramzow
- Present address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, Germany
| | - Paul Battlay
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Tamar Sztal
- Present address: School of Biological Sciences, Monash University, Australia
| | - Philip Batterham
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Charles Robin
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| |
Collapse
|
3
|
Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents. Heredity (Edinb) 2014; 113:64-73. [PMID: 24595364 DOI: 10.1038/hdy.2014.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 01/13/2023] Open
Abstract
Gene duplication plays an important role in the origin of evolutionary novelties, but the mechanisms responsible for the retention and functional divergence of the duplicated copy are not fully understood. The α-globin genes provide an example of a gene family with different numbers of gene duplicates among rodents. Whereas Rattus and Peromyscus each have three adult α-globin genes (HBA-T1, HBA-T2 and HBA-T3), Mus has only two copies. High rates of amino acid evolution in the independently derived HBA-T3 genes of Peromyscus and Rattus have been attributed to positive selection. Using RACE PCR, reverse transcription-PCR (RT-PCR) and RNA-seq, we show that another rodent, the bank vole Clethrionomys glareolus, possesses three transcriptionally active α-globin genes. The bank vole HBA-T3 gene is distinguished from each HBA-T1 and HBA-T2 by 20 amino acids and is transcribed 23- and 4-fold lower than HBA-T1 and HBA-T2, respectively. Polypeptides corresponding to all three genes are detected by electrophoresis, demonstrating that the translated products of HBA-T3 are present in adult erythrocytes. Patterns of codon substitution and the presence of low-frequency null alleles suggest a postduplication relaxation of purifying selection on bank vole HBA-T3.
Collapse
|
4
|
Rao YS, Wang ZF, Chai XW, Wu GZ, Nie QH, Zhang XQ. Indel segregating within introns in the chicken genome are positively correlated with the recombination rates. Hereditas 2010. [DOI: 10.1111/j.1601-5223.2009.2141.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Beyenbach KW, Skaer H, Dow JAT. The developmental, molecular, and transport biology of Malpighian tubules. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:351-74. [PMID: 19961332 DOI: 10.1146/annurev-ento-112408-085512] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular biology is reaching new depths in our understanding of the development and physiology of Malpighian tubules. In Diptera, Malpighian tubules derive from ectodermal cells that evaginate from the primitive hindgut and subsequently undergo a sequence of orderly events that culminates in an active excretory organ by the time the larva takes its first meal. Thereafter, the tubules enlarge by cell growth. Just as modern experimental strategies have illuminated the development of tubules, genomic, transcriptomic, and proteomic studies have uncovered new tubule functions that serve immune defenses and the breakdown and renal clearance of toxic substances. Moreover, genes associated with specific diseases in humans are also found in flies, some of which, astonishingly, express similar pathophenotypes. However, classical experimental approaches continue to show their worth by distinguishing between -omic possibilities and physiological reality while providing further detail about the rapid regulation of the transport pathway through septate junctions and the reversible assembly of proton pumps.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
6
|
Fast sequence evolution of Hox and Hox-derived genes in the genus Drosophila. BMC Evol Biol 2006; 6:106. [PMID: 17163987 PMCID: PMC1764764 DOI: 10.1186/1471-2148-6-106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 12/12/2006] [Indexed: 12/02/2022] Open
Abstract
Background It is expected that genes that are expressed early in development and have a complex expression pattern are under strong purifying selection and thus evolve slowly. Hox genes fulfill these criteria and thus, should have a low evolutionary rate. However, some observations point to a completely different scenario. Hox genes are usually highly conserved inside the homeobox, but very variable outside it. Results We have measured the rates of nucleotide divergence and indel fixation of three Hox genes, labial (lab), proboscipedia (pb) and abdominal-A (abd-A), and compared them with those of three genes derived by duplication from Hox3, bicoid (bcd), zerknüllt (zen) and zerknüllt-related (zen2), and 15 non-Hox genes in sets of orthologous sequences of three species of the genus Drosophila. These rates were compared to test the hypothesis that Hox genes evolve slowly. Our results show that the evolutionary rate of Hox genes is higher than that of non-Hox genes when both amino acid differences and indels are taken into account: 43.39% of the amino acid sequence is altered in Hox genes, versus 30.97% in non-Hox genes and 64.73% in Hox-derived genes. Microsatellites scattered along the coding sequence of Hox genes explain partially, but not fully, their fast sequence evolution. Conclusion These results show that Hox genes have a higher evolutionary dynamics than other developmental genes, and emphasize the need to take into account indels in addition to nucleotide substitutions in order to accurately estimate evolutionary rates.
Collapse
|
7
|
Newcomb RD, Gleeson DM, Yong CG, Russell RJ, Oakeshott JG. Multiple mutations and gene duplications conferring organophosphorus insecticide resistance have been selected at the Rop-1 locus of the sheep blowfly, Lucilia cuprina. J Mol Evol 2005; 60:207-20. [PMID: 15785849 DOI: 10.1007/s00239-004-0104-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Accepted: 09/09/2004] [Indexed: 11/27/2022]
Abstract
Sequences of the esterase gene alpha E7 were compared across 41 isogenic (IV) strains of the sheep blowfly, Lucilia cuprina, and one strain of the sibling species, L. sericata. The 1.2-kb region sequenced includes sites of two insecticide resistance mutations. Gly137Asp confers resistance to organophosphorus insecticides (OPs), particularly preferring diethyl OPs such as diazinon, while Trp251Leu prefers dimethyl OPs, and particularly malathion, with the additional presence of carboxylester moieties. We found that there are just eight haplotypes among the 41 chromosomes studied: two Gly137Asp containing haplotypes, two Trp251Leu containing haplotypes, and four susceptible haplotypes, including the L. sericata sequence. While phylogenetic analysis of these haplotypes suggests that the Asp137 and Leu251 mutations each arose at least twice, evidence for recombination was detected across the region, therefore single origins for these resistance mutations cannot be ruled out. Levels of linkage disequilibrium in the data are high and significant hitchhiking is indicated by Fay and Wu' s H test but not the Tajima test. A test of haplotype diversity indicates a paucity of diversity compared with neutral expectations. Both these results are consistent with a very recent selective sweep at the Lc alphaE7 locus. Interestingly, gene duplications of three different combinations of OP resistant haplotypes were identified in seven of the isogenic (IV) strains. All three types of duplication involve an Asp137 and a Trp251 haplotype. To examine whether more haplotypes existed before the hypothesised selective sweep, fragments of alpha E7 surrounding the resistance mutations were amplified from pinned material dating back to before OPs were used. Four new sequence haplotypes, not sampled in the survey of extant haplotypes, were obtained that are all associated with susceptibility. This is suggestive of a higher historical level of susceptible allelic diversity at this locus.
Collapse
Affiliation(s)
- Richard D Newcomb
- Gene Technologies Sector, The Horticulture and Food Research Institute of New Zealand, Private Bag 92169 Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Pseudogenes have been defined as nonfunctional sequences of genomic DNA originally derived from functional genes. It is therefore assumed that all pseudogene mutations are selectively neutral and have equal probability to become fixed in the population. Rather, pseudogenes that have been suitably investigated often exhibit functional roles, such as gene expression, gene regulation, generation of genetic (antibody, antigenic, and other) diversity. Pseudogenes are involved in gene conversion or recombination with functional genes. Pseudogenes exhibit evolutionary conservation of gene sequence, reduced nucleotide variability, excess synonymous over nonsynonymous nucleotide polymorphism, and other features that are expected in genes or DNA sequences that have functional roles. We first review the Drosophila literature and then extend the discussion to the various functional features identified in the pseudogenes of other organisms. A pseudogene that has arisen by duplication or retroposition may, at first, not be subject to natural selection if the source gene remains functional. Mutant alleles that incorporate new functions may, nevertheless, be favored by natural selection and will have enhanced probability of becoming fixed in the population. We agree with the proposal that pseudogenes be considered as potogenes, i.e., DNA sequences with a potentiality for becoming new genes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | |
Collapse
|
9
|
Campbell PM, de Q Robin GC, Court LN, Dorrian SJ, Russell RJ, Oakeshott JG. Developmental expression and gene/enzyme identifications in the alpha esterase gene cluster of Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2003; 12:459-471. [PMID: 12974951 DOI: 10.1046/j.1365-2583.2003.00430.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we show how the 10 genes of the alpha esterase cluster of Drosophila melanogaster have diverged substantially in their expression profiles. Together with previously described sequence divergence this suggests substantial functional diversification. By peptide mass fingerprinting and in vitro gene expression we have also shown that two of the genes encode the isozymes EST9 (formerly ESTC) and EST23. EST9 is the major 'alpha staining' esterase in zymograms of gut tissues in feeding stages while orthologues of EST23 confer resistance to organophosphorus insecticides in other higher Diptera. The results for EST9 and EST23 concur with previous suggestions that the products of the alpha esterase cluster function in digestion and detoxification of xenobiotic esters. However, many of the other genes in the cluster show developmental or tissue-specific expression that seems inconsistent with such roles. Furthermore, there is generally poor correspondence between the mRNA expression patterns of the remaining eight genes and isozymes previously characterized by standard techniques of electrophoresis and staining, suggesting that the alpha cluster might only account for a small minority of the esterase isozyme profile.
Collapse
Affiliation(s)
- P M Campbell
- Division of Entomology, Commonwealth Scientific & Industrial Research Organization, ACT, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Harrison PM, Milburn D, Zhang Z, Bertone P, Gerstein M. Identification of pseudogenes in the Drosophila melanogaster genome. Nucleic Acids Res 2003; 31:1033-7. [PMID: 12560500 PMCID: PMC149191 DOI: 10.1093/nar/gkg169] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudogenes are copies of genes that cannot produce a protein. They can be detected from disruptions to their apparent coding sequence, caused by frameshifts and premature stop codons. They are classed as either processed pseudogenes (made by reverse transcription from an mRNA) or duplicated pseudogenes, arising from duplication in the genomic DNA and subsequent disablement. Historically, there is anecdotal evidence that the fruit fly (Drosophila melanogaster) has few pseudogenes. Investigators have linked this to a high deletion rate of genomic DNA, for which there is evidence from genetic experiments on genome size. Here, we apply a homology-based pipeline that was developed previously to identify pseudogenes in other eukaryotic genomes, to the fruit fly, so as to derive the first complete survey of its pseudogene population. We find approximately 100 pseudogenes, with at least a sixth of these as candidate processed pseudogenes. This gives a much lower proportion of pseudogenes (compared with the size of the proteome) than in the genomes of other eukaryotes for which data are available (human, nematode and budding yeast). Closest matching proteins to Drosophila pseudogenes are significantly longer than the average protein in its proteome (up to approximately 60% more than the average protein's length), in contrast to the situation in the three other eukaryotic genomes. This may be due to the persistence of fragments of longer genes. In the fly pseudogene population, we found most pseudogenes for serine proteases (which are more abundant in the Drosophila lineage compared with the other eukaryotes), immunoglobulin-motif-containing proteins and cytochromes P450. Data on the sequences and positions of the putative pseudogenes are available at: http://www.pseudogene.org/fly. The detection of a small number of pseudogenes in the Drosophila genome and the higher mean length for the closest matching proteins to pseudogenes (possibly because remnants of genes encoding longer proteins are more likely to persist) are further evidence for a high deletion rate of genomic DNA in the fruit fly. The data are useful for molecular evolution study in Drosophila.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520-8114, USA.
| | | | | | | | | |
Collapse
|
11
|
Ptak SE, Petrov DA. How intron splicing affects the deletion and insertion profile in Drosophila melanogaster. Genetics 2002; 162:1233-44. [PMID: 12454069 PMCID: PMC1462315 DOI: 10.1093/genetics/162.3.1233] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies of "dead-on-arrival" transposable elements in Drosophila melanogaster found that deletions outnumber insertions approximately 8:1 with a median size for deletions of approximately 10 bp. These results are consistent with the deletion and insertion profiles found in most other Drosophila pseudogenes. In contrast, a recent study of D. melanogaster introns found a deletion/insertion ratio of 1.35:1, with 84% of deletions being shorter than 10 bp. This discrepancy could be explained if deletions, especially long deletions, are more frequently strongly deleterious than insertions and are eliminated disproportionately from intron sequences. To test this possibility, we use analysis and simulations to examine how deletions and insertions of different lengths affect different components of splicing and determine the distribution of deletions and insertions that preserve the original exons. We find that, consistent with our predictions, longer deletions affect splicing at a much higher rate compared to insertions and short deletions. We also explore other potential constraints in introns and show that most of these also disproportionately affect large deletions. Altogether we demonstrate that constraints in introns may explain much of the difference in the pattern of deletions and insertions observed in Drosophila introns and pseudogenes.
Collapse
Affiliation(s)
- Susan E Ptak
- Department of Biological Sciences, Stanford University, California 94305, USA.
| | | |
Collapse
|
12
|
Abstract
The paper describes a mutational equilibrium model of genome size evolution. This model is different from both adaptive and junk DNA models of genome size evolution in that it does not assume that genome size is maintained either by positive or stabilizing selection for the optimum genome size (as in adaptive theories) or by purifying selection against too much junk DNA (as in junk DNA theories). Instead the genome size is suggested to evolve until the loss of DNA through more frequent small deletions is equal to the rate of DNA gain through more frequent long insertions. The empirical basis for this theory is the finding of a strong correlation and of a clear power-function relationship between the rate of mutational DNA loss (per bp) through small deletions and genome size in animals. Genome size scales as a negative 1.3 power function of the deletion rate per nucleotide. Such a relationship is not predicted by either adaptive or junk DNA theories. However, if genome size is maintained at equilibrium by the balance of mutational forces, this empirilical relationship can be readily accommodated. Within this framework, this finding would imply that the rate of DNA gain through large insertions scales up a quarter-power function of genome size. On this view, as genome size grows, the rate of growth through large insertions is increasing as a quarter power function of genome size and the rate of DNA loss through small deletions increases linearly, until eventually, at the stable equilibrium genome size value, rates of growth and loss equal each other. The current data also suggest that the long-term variation is genome size in animals is brought about to a significant extent by changes in the intrinsic rates of DNA loss through small deletions. Both the origin of mutational biases and the adaptive consequences of such a mode of evolution of genome size are discussed.
Collapse
Affiliation(s)
- Dmitri A Petrov
- Department of Biological Sciences, Stanford University, California 94025, USA.
| |
Collapse
|
13
|
Harrison PM, Gerstein M. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 2002; 318:1155-74. [PMID: 12083509 DOI: 10.1016/s0022-2836(02)00109-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein families can be used to understand many aspects of genomes, both their "live" and their "dead" parts (i.e. genes and pseudogenes). Surveys of genomes have revealed that, in every organism, there are always a few large families and many small ones, with the overall distribution following a power-law. This commonality is equally true for both genes and pseudogenes, and exists despite the fact that the specific families that are enlarged differ greatly between organisms. Furthermore, because of family structure there is great redundancy in proteomes, a fact linked to the large number of dispensable genes for each organism and the small size of the minimal, indispensable sub-proteome. Pseudogenes in prokaryotes represent families that are in the process of being dispensed with. In particular, the genome sequences of certain pathogenic bacteria (Mycobacterium leprae, Yersinia pestis and Rickettsia prowazekii) show how an organism can undergo reductive evolution on a large scale (i.e. the dying out of families) as a result of niche change. There appears to be less pressure to delete pseudogenes in eukaryotes. These can be divided into two varieties, duplicated and processed, where the latter involves reverse transcription from an mRNA intermediate. We discuss these collectively in yeast, worm, fly, and human. The fly has few pseudogenes apparently because of its high rate of genomic DNA deletion. In the other three organisms, the distribution of pseudogenes on the chromosome and amongst different families is highly non-uniform. Pseudogenes tend not to occur in the middle of chromosome arms, and tend to be associated with lineage-specific (as opposed to highly conserved) families that have environmental-response functions. This may be because, rather than being dead, they may form a reservoir of diverse "extra parts" that can be resurrected to help an organism adapt to its surroundings. In yeast, there may be a novel mechanism involving the [PSI+] prion that potentially enables this resurrection. In worm, the pseudogenes tend to arise out of families (e.g. chemoreceptors) that are greatly expanded in it compared to the fly. The human genome stands out in having many processed pseudogenes. These have a character very different from those of the duplicated variety, to a large extent just representing random insertions. Thus, their occurrence tends to be roughly in proportion to the amount of mRNA for a particular protein and to reflect the extent of the intergenic sequences. Further information about pseudogenes is available at http://genecensus.org/pseudogene
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
14
|
Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M. A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res 2002; 30:1083-90. [PMID: 11861898 PMCID: PMC101239 DOI: 10.1093/nar/30.5.1083] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2001] [Revised: 12/20/2001] [Accepted: 01/02/2002] [Indexed: 11/14/2022] Open
Abstract
We discuss the problems in defining the extent of the proteomes for completely sequenced eukaryotic organisms (i.e. the total number of protein-coding sequences), focusing on yeast, worm, fly and human. (i) Six years after completion of its genome sequence, the true size of the yeast proteome is still not defined. New small genes are still being discovered, and a large number of existing annotations are being called into question, with these questionable ORFs (qORFs) comprising up to one-fifth of the 'current' proteome. We discuss these in the context of an ideal genome-annotation strategy that considers the proteome as a rigorously defined subset of all possible coding sequences ('the orfome'). (ii) Despite the greater apparent complexity of the fly (more cells, more complex physiology, longer lifespan), the nematode worm appears to have more genes. To explain this, we compare the annotated proteomes of worm and fly, relating to both genome-annotation and genome evolution issues. (iii) The unexpectedly small size of the gene complement estimated for the complete human genome provoked much public debate about the nature of biological complexity. However, in the first instance, for the human genome, the relationship between gene number and proteome size is far from simple. We survey the current estimates for the numbers of human genes and, from this, we estimate a range for the size of the human proteome. The determination of this is substantially hampered by the unknown extent of the cohort of pseudogenes ('dead' genes), in combination with the prevalence of alternative splicing. (Further information relating to yeast is available at http://genecensus.org/yeast/orfome)
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Newly emerging data from genome sequencing projects suggest that gene duplication, often accompanied by genetic map changes, is a common and ongoing feature of all genomes. This raises the possibility that differential expansion/contraction of various genomic sequences may be just as important a mechanism of phenotypic evolution as changes at the nucleotide level. However, the population-genetic mechanisms responsible for the success vs. failure of newly arisen gene duplicates are poorly understood. We examine the influence of various aspects of gene structure, mutation rates, degree of linkage, and population size (N) on the joint fate of a newly arisen duplicate gene and its ancestral locus. Unless there is active selection against duplicate genes, the probability of permanent establishment of such genes is usually no less than 1/(4N) (half of the neutral expectation), and it can be orders of magnitude greater if neofunctionalizing mutations are common. The probability of a map change (reassignment of a key function of an ancestral locus to a new chromosomal location) induced by a newly arisen duplicate is also generally >1/(4N) for unlinked duplicates, suggesting that recurrent gene duplication and alternative silencing may be a common mechanism for generating microchromosomal rearrangements responsible for postreproductive isolating barriers among species. Relative to subfunctionalization, neofunctionalization is expected to become a progressively more important mechanism of duplicate-gene preservation in populations with increasing size. However, even in large populations, the probability of neofunctionalization scales only with the square of the selective advantage. Tight linkage also influences the probability of duplicate-gene preservation, increasing the probability of subfunctionalization but decreasing the probability of neofunctionalization.
Collapse
Affiliation(s)
- M Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
16
|
Celotto AM, Graveley BR. Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics 2001; 159:599-608. [PMID: 11606537 PMCID: PMC1461822 DOI: 10.1093/genetics/159.2.599] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam) gene encodes an axon guidance receptor that can express 38,016 different mRNAs by virtue of alternative splicing. The Dscam gene contains 95 alternative exons that are organized into four clusters of 12, 48, 33, and 2 exons each. Although numerous Dscam mRNA isoforms can be synthesized, it remains to be determined whether different Dscam isoforms are synthesized at different times in development or in different tissues. We have investigated the alternative splicing of the Dscam exon 4 cluster, which contains 12 mutually exclusive alternative exons, and found that Dscam exon 4 alternative splicing is developmentally regulated. The most highly regulated exon, 4.2, is infrequently used in early embryos but is the predominant exon 4 variant used in adults. Moreover, the developmental regulation of exon 4.2 alternative splicing is conserved in D. yakuba. In addition, different adult tissues express distinct collections of Dscam mRNA isoforms. Given the role of Dscam in neural development, these results suggest that the regulation of alternative splicing plays an important role in determining the specificity of neuronal wiring. In addition, this work provides a framework to determine the mechanisms by which complex alternative splicing events are regulated.
Collapse
Affiliation(s)
- A M Celotto
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|