1
|
Wang H, Zheng Z, Zheng L, Zhang Z, Dong C, Zhao J. Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus. PHOTOSYNTHESIS RESEARCH 2023; 158:81-90. [PMID: 36847892 DOI: 10.1007/s11120-023-01003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Gloeobacter violaceus is an ancient cyanobacterium as it branches out from the basal position in the phylogenic tree of cyanobacteria. It lacks thylakoid membranes and its unique bundle-shaped type of phycobilisomes (PBS) for light harvesting in photosynthesis are located on the interior side of cytoplasmic membranes. The PBS from G. violaceus have two large linker proteins that are not present in any other PBS, Glr2806, and Glr1262, which are encoded by the genes glr2806 and glr1262, respectively. The location and functions of the linkers Glr2806 and Glr1262 are currently unclear. Here, we report the studies of mutagenetic analysis of glr2806 and the genes of cpeBA, encoding the β and α subunits of phycoerythrin (PE), respectively. In the mutant lacking glr2806, the length of the PBS rods remains unchanged, but the bundles are less tightly packed as examined by electron microscopy with negative staining. It is also shown that two hexamers are missing in the peripheral area of the PBS core, strongly suggesting that the linker Glr2806 is located in the core area instead of the rods. In the mutant lacking the cpeBA genes, PE is no longer present and the PBS rods have only three layers of phycocyanin hexamers. The construction of deletional mutants in G. violaceus, achieved for the first time, provides critical information for our understanding of its unique PBS and should be useful in studies of other aspects of this interesting organism as well.
Collapse
Affiliation(s)
- Hongrui Wang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lvqin Zheng
- State Key Laboratory of Membranes and Membrane Engineering, PKU-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhengdong Zhang
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M, Akimoto S, Dohmae N, Yonekura K, Shen JR. Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. eLife 2022; 11:73990. [PMID: 35404232 PMCID: PMC9000952 DOI: 10.7554/elife.73990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | | | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | | | - Akio Murakami
- Graduate School of Science, Kobe University
- Research Center for Inland Seas, Kobe University
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University
| | | | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
3
|
Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T, Fournier GP. An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids. Front Microbiol 2019; 10:1612. [PMID: 31354692 PMCID: PMC6640209 DOI: 10.3389/fmicb.2019.01612] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/27/2019] [Indexed: 01/16/2023] Open
Abstract
The phylum Cyanobacteria includes free-living bacteria and plastids, the descendants of cyanobacteria that were engulfed by the ancestral lineage of the major photosynthetic eukaryotic group Archaeplastida. Endosymbiotic events that followed this primary endosymbiosis spread plastids across diverse eukaryotic groups. The remnants of the ancestral cyanobacterial genome present in all modern plastids, enable the placement of plastids within Cyanobacteria using sequence-based phylogenetic analyses. To date, such phylogenetic studies have produced conflicting results and two competing hypotheses: (1) plastids diverge relatively recently in cyanobacterial evolution and are most closely related to nitrogen-fixing cyanobacteria, or (2) plastids diverge early in the evolutionary history of cyanobacteria, before the divergence of most cyanobacterial lineages. Here, we use phylogenetic analysis of ribosomal proteins from an expanded data set of cyanobacterial and representative plastid genomes to infer a deep placement for the divergence of the plastid ancestor lineage. We recover plastids as sister to Gloeomargarita and show that the group diverges from other cyanobacterial groups before Pseudanabaena, a previously unreported placement. The tree topologies and phylogenetic distances in our study have implications for future molecular clock studies that aim to model accurate divergence times, especially with respect to groups containing fossil calibrations. The newly sequenced cyanobacterial groups included here will also enable the use of novel cyanobacterial microfossil calibrations.
Collapse
Affiliation(s)
- Kelsey R Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Cara Magnabosco
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States
| | - Lily Momper
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, United States
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Role of habitat and great oxidation event on the occurrence of three multisubunit inorganic carbon-uptake systems in cyanobacteria. J Genet 2016; 95:109-18. [PMID: 27019438 DOI: 10.1007/s12041-015-0606-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The oxygenase reaction catalyzed by RuBisCO became an issue only after the evolution of the oxygenic photosynthesis in cyanobacteria. Several strategies were developed by autotrophic organisms as an evolutionary response to increase oxygen levels to help RuBisCO maximize its net carboxylation rate. One of the crucial advancements in this context was the development of more efficient inorganic carbon transporters which could help in increasing the influx of inorganic carbon (Ci) at the site of CO₂ fixation.We conducted a survey to find out the genes coding for cyanobacterial Ci transporters in 40 cyanobacterial phyla with respect to transporters present in Gloeobacter violaceous PCC 7421, an early-diverging cyanobacterium. An attempt was also made to correlate the prevalence of the kind of transporter present in the species with its habitat. Basically, two types of cyanobacterial inorganic carbon transporters exist, i.e. bicarbonate transporters and CO₂-uptake systems. The transporters also show variation in context to their structure as some exist as single subunit proteins (BicA and SbtA), while others exist as multisubunit proteins (namely BCT1, NdhI₃ and NdhI₄). The phylogeny and dist ribution of the former have been extensively studied and the present analysis provides an insight into the latter ones. The in silico analysis of the genes under study revealed that their distribution was greatly influenced by the habitat and major environmental changes such as the great oxidation event (GOE) in the course of their evolution.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333 031,
| | | | | | | | | |
Collapse
|
5
|
Choi AR, Shi L, Brown LS, Jung KH. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 2014; 9:e110643. [PMID: 25347537 PMCID: PMC4210194 DOI: 10.1371/journal.pone.0110643] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/02/2014] [Indexed: 12/02/2022] Open
Abstract
A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids.
Collapse
Affiliation(s)
- Ah Reum Choi
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Lichi Shi
- Department of Physics, University of Guelph, Ontario, Canada
| | - Leonid S. Brown
- Department of Physics, University of Guelph, Ontario, Canada
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
6
|
Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs. Extremophiles 2014; 18:1035-47. [PMID: 25078728 DOI: 10.1007/s00792-014-0680-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/13/2014] [Indexed: 11/27/2022]
Abstract
Geothermal springs in Algeria have been known since the Roman Empire. They mainly locate in Eastern Algeria and are inhabited by thermophilic organisms, which include cyanobacteria forming mats and concretions. In this work, we have investigated the cyanobacterial diversity of these springs. Cyanobacteria were collected from water, concretions and mats in nine hot springs with water temperatures ranging from 39 to 93 °C. Samples were collected for isolation in culture, microscopic morphological examination, and molecular diversity analysis based on 16S rRNA gene sequences. Nineteen different cyanobacterial morphotypes were identified, the most abundant of which were three species of Leptolyngbya, accompanied by members of the genera Gloeocapsa, Gloeocapsopsis, Stigonema, Fischerella, Synechocystis, Microcoleus, Cyanobacterium, Chroococcus and Geitlerinema. Molecular diversity analyses were in good general agreement with classical identification and allowed the detection of additional species in three springs with temperatures higher than 50 °C. They corresponded to a Synechococcus clade and to relatives of the intracellularly calcifying Candidatus Gloeomargarita lithophora. The hottest springs were dominated by members of Leptolyngbya, Synechococcus-like cyanobacteria and Gloeomargarita, whereas Oscillatoriales other than Leptolyngbya, Chroococcales and Stigonematales dominated lower temperature springs. The isolation of some of these strains sets the ground for future studies on the biology of thermophilic cyanobacteria.
Collapse
|
7
|
Li B, Lopes JS, Foster PG, Embley TM, Cox CJ. Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Mol Biol Evol 2014; 31:1697-709. [PMID: 24795089 PMCID: PMC4069611 DOI: 10.1093/molbev/msu105] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Archaeplastida (=Kingdom Plantae) are primary plastid-bearing organisms that evolved via the endosymbiotic association of a heterotrophic eukaryote host cell and a cyanobacterial endosymbiont approximately 1,400 Ma. Here, we present analyses of cyanobacterial and plastid genomes that show strongly conflicting phylogenies based on 75 plastid (or nuclear plastid-targeted) protein-coding genes and their direct translations to proteins. The conflict between genes and proteins is largely robust to the use of sophisticated data- and tree-heterogeneous composition models. However, by using nucleotide ambiguity codes to eliminate synonymous substitutions due to codon-degeneracy, we identify a composition bias, and dependent codon-usage bias, resulting from synonymous substitutions at all third codon positions and first codon positions of leucine and arginine, as the main cause for the conflicting phylogenetic signals. We argue that the protein-coding gene data analyses are likely misleading due to artifacts induced by convergent composition biases at first codon positions of leucine and arginine and at all third codon positions. Our analyses corroborate previous studies based on gene sequence analysis that suggest Cyanobacteria evolved by the early paraphyletic splitting of Gloeobacter and a specific Synechococcus strain (JA33Ab), with all other remaining cyanobacterial groups, including both unicellular and filamentous species, forming the sister-group to the Archaeplastida lineage. In addition, our analyses using better-fitting models suggest (but without statistically strong support) an early divergence of Glaucophyta within Archaeplastida, with the Rhodophyta (red algae), and Viridiplantae (green algae and land plants) forming a separate lineage.
Collapse
Affiliation(s)
- Blaise Li
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - João S Lopes
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
8
|
Moreira C, Vasconcelos V, Antunes A. Phylogeny and biogeography of cyanobacteria and their produced toxins. Mar Drugs 2013; 11:4350-69. [PMID: 24189276 PMCID: PMC3853732 DOI: 10.3390/md11114350] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/29/2013] [Accepted: 10/09/2013] [Indexed: 11/17/2022] Open
Abstract
Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins.
Collapse
Affiliation(s)
- Cristiana Moreira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 289, Porto 4050-123, Portugal; E-Mails: (C.M.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 289, Porto 4050-123, Portugal; E-Mails: (C.M.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas, 289, Porto 4050-123, Portugal; E-Mails: (C.M.); (V.V.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| |
Collapse
|
9
|
Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS, Shick H, Christensen S, Hou S, Wan X, Donachie SP. Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a lava cave in Kīlauea Caldera, Hawai'i. PLoS One 2013; 8:e76376. [PMID: 24194836 PMCID: PMC3806779 DOI: 10.1371/journal.pone.0076376] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/24/2013] [Indexed: 02/05/2023] Open
Abstract
The ancestor of Gloeobacter violaceus PCC 7421(T) is believed to have diverged from that of all known cyanobacteria before the evolution of thylakoid membranes and plant plastids. The long and largely independent evolutionary history of G. violaceus presents an organism retaining ancestral features of early oxygenic photoautotrophs, and in whom cyanobacteria evolution can be investigated. No other Gloeobacter species has been described since the genus was established in 1974 (Rippka et al., Arch Microbiol 100:435). Gloeobacter affiliated ribosomal gene sequences have been reported in environmental DNA libraries, but only the type strain's genome has been sequenced. However, we report here the cultivation of a new Gloeobacter species, G. kilaueensis JS1(T), from an epilithic biofilm in a lava cave in Kīlauea Caldera, Hawai'i. The strain's genome was sequenced from an enriched culture resembling a low-complexity metagenomic sample, using 9 kb paired-end 454 pyrosequences and 400 bp paired-end Illumina reads. The JS1(T) and G. violaceus PCC 7421(T) genomes have little gene synteny despite sharing 2842 orthologous genes; comparing the genomes shows they do not belong to the same species. Our results support establishing a new species to accommodate JS1(T), for which we propose the name Gloeobacter kilaueensis sp. nov. Strain JS1(T) has been deposited in the American Type Culture Collection (BAA-2537), the Scottish Marine Institute's Culture Collection of Algae and Protozoa (CCAP 1431/1), and the Belgian Coordinated Collections of Microorganisms (ULC0316). The G. kilaueensis holotype has been deposited in the Algal Collection of the US National Herbarium (US# 217948). The JS1(T) genome sequence has been deposited in GenBank under accession number CP003587. The G+C content of the genome is 60.54 mol%. The complete genome sequence of G. kilaueensis JS1(T) may further understanding of cyanobacteria evolution, and the shift from anoxygenic to oxygenic photosynthesis.
Collapse
Affiliation(s)
- Jimmy H. W. Saw
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| | - Michael Schatz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Mark V. Brown
- NASA Astrobiology Institute, University of Hawai'i, Honolulu, Hawai'i, United States of America
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Dennis D. Kunkel
- Dennis Kunkel Microscopy, Inc., Kailua, Hawai'i, United States of America
| | - Jamie S. Foster
- Department of Microbiology and Cell Science, University of Florida Space Life Science Laboratory, Kennedy Space Center, Kennedy, Florida, United States of America
| | | | - Stephanie Christensen
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, Hawai'I, United States of America
| | - Shaobin Hou
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
- Advanced Studies of Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| | - Xuehua Wan
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
- Advanced Studies of Genomics, Proteomics and Bioinformatics, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| | - Stuart P. Donachie
- Department of Microbiology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| |
Collapse
|
10
|
Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 2012; 110:1053-8. [PMID: 23277585 DOI: 10.1073/pnas.1217107110] [Citation(s) in RCA: 538] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cyanobacterial phylum encompasses oxygenic photosynthetic prokaryotes of a great breadth of morphologies and ecologies; they play key roles in global carbon and nitrogen cycles. The chloroplasts of all photosynthetic eukaryotes can trace their ancestry to cyanobacteria. Cyanobacteria also attract considerable interest as platforms for "green" biotechnology and biofuels. To explore the molecular basis of their different phenotypes and biochemical capabilities, we sequenced the genomes of 54 phylogenetically and phenotypically diverse cyanobacterial strains. Comparison of cyanobacterial genomes reveals the molecular basis for many aspects of cyanobacterial ecophysiological diversity, as well as the convergence of complex morphologies without the acquisition of novel proteins. This phylum-wide study highlights the benefits of diversity-driven genome sequencing, identifying more than 21,000 cyanobacterial proteins with no detectable similarity to known proteins, and foregrounds the diversity of light-harvesting proteins and gene clusters for secondary metabolite biosynthesis. Additionally, our results provide insight into the distribution of genes of cyanobacterial origin in eukaryotic nuclear genomes. Moreover, this study doubles both the amount and the phylogenetic diversity of cyanobacterial genome sequence data. Given the exponentially growing number of sequenced genomes, this diversity-driven study demonstrates the perspective gained by comparing disparate yet related genomes in a phylum-wide context and the insights that are gained from it.
Collapse
|
11
|
Araki M, Shimada Y, Mimuro M, Tsuchiya T. Establishment of the reporter system for a thylakoid-lacking cyanobacterium, Gloeobacter violaceus PCC 7421. FEBS Open Bio 2012; 3:11-5. [PMID: 23847755 PMCID: PMC3668518 DOI: 10.1016/j.fob.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/04/2012] [Accepted: 11/10/2012] [Indexed: 11/15/2022] Open
Abstract
Gloeobacter violaceus PCC 7421 is considered, by molecular phylogenetic analyses, to be an early-branching cyanobacterium within the cyanobacterial clade. G. violaceus is the only known oxygenic photosynthetic organism that lacks thylakoid membranes. There is only one report on the development of a transformation system for G. violaceus [H. Guo, X. Xu, Prog. Nat. Sci. 14 (2004) 31–35] and further studies using the system have not been reported. In the present study, we succeeded in introducing an expression vector (pKUT1121) derived from a broad-host-range plasmid, RSF1010, into G. violaceus by conjugation. The frequency of transformation of our system is significantly higher than that described in the previous report. In addition, luciferase heterologously expressed in G. violaceus functioned as a reporter. The established system will promote the molecular genetic studies on G. violaceus.
Collapse
Affiliation(s)
| | | | | | - Tohru Tsuchiya
- Corresponding author. Address: Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan. Tel.: +81 75 753 6575; fax: +81 75 753 7909.
| |
Collapse
|
12
|
Yuzawa Y, Nishihara H, Haraguchi T, Masuda S, Shimojima M, Shimoyama A, Yuasa H, Okada N, Ohta H. Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis. DNA Res 2011; 19:91-102. [PMID: 22210603 PMCID: PMC3276260 DOI: 10.1093/dnares/dsr044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The photosynthetic membranes of cyanobacteria and chloroplasts of higher plants have remarkably similar lipid compositions. In particular, thylakoid membranes of both cyanobacteria and chloroplasts are composed of galactolipids, of which monogalactosyldiacylglycerol (MGDG) is the most abundant, although MGDG biosynthetic pathways are different in these organisms. Comprehensive phylogenetic analysis revealed that MGDG synthase (MGD) homologs of filamentous anoxygenic phototrophs Chloroflexi have a close relationship with MGDs of Viridiplantae (green algae and land plants). Furthermore, analyses for the sugar specificity and anomeric configuration of the sugar head groups revealed that one of the MGD homologs exhibited a true MGDG synthetic activity. We therefore presumed that higher plant MGDs are derived from this ancestral type of MGD genes, and genes involved in membrane biogenesis and photosystems have been already functionally associated at least at the time of Chloroflexi divergence. As MGD gene duplication is an important event during plastid evolution, we also estimated the divergence time of type A and B MGDs. Our analysis indicated that these genes diverged ∼323 million years ago, when Spermatophyta (seed plants) were appearing. Galactolipid synthesis is required to produce photosynthetic membranes; based on MGD gene sequences and activities, we have proposed a novel evolutionary model that has increased our understanding of photosynthesis evolution.
Collapse
Affiliation(s)
- Yuichi Yuzawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Heyes DJ, Levy C, Sakuma M, Robertson DL, Scrutton NS. A twin-track approach has optimized proton and hydride transfer by dynamically coupled tunneling during the evolution of protochlorophyllide oxidoreductase. J Biol Chem 2011; 286:11849-54. [PMID: 21317291 DOI: 10.1074/jbc.m111.219626] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein dynamics are crucial for realizing the catalytic power of enzymes, but how enzymes have evolved to achieve catalysis is unknown. The light-activated enzyme protochlorophyllide oxidoreductase (POR) catalyzes sequential hydride and proton transfers in the photoexcited and ground states, respectively, and is an excellent system for relating the effects of motions to catalysis. Here, we have used the temperature dependence of isotope effects and solvent viscosity measurements to analyze the dynamics coupled to the hydride and proton transfer steps in three cyanobacterial PORs and a related plant enzyme. We have related the dynamic profiles of each enzyme to their evolutionary origin. Motions coupled to light-driven hydride transfer are conserved across all POR enzymes, but those linked to thermally activated proton transfer are variable. Cyanobacterial PORs require complex and solvent-coupled dynamic networks to optimize the proton donor-acceptor distance, but evolutionary pressures appear to have minimized such networks in plant PORs. POR from Gloeobacter violaceus has features of both the cyanobacterial and plant enzymes, suggesting that the dynamic properties have been optimized during the evolution of POR. We infer that the differing trajectories in optimizing a catalytic structure are related to the stringency of the chemistry catalyzed and define a functional adaptation in which active site chemistry is protected from the dynamic effects of distal mutations that might otherwise impact negatively on enzyme catalysis.
Collapse
Affiliation(s)
- Derren J Heyes
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Abstract
tmRNA combines tRNA and mRNA properties and helps bacteria to cope with stalled ribosomes. Its termini normally pair in the tRNA domain, closing the mRNA portion into a looping domain. A striking variation is a two-piece form that effectively breaks open the mRNA domain loop, resulting from independent gene permutation events in alphaproteobacteria and cyanobacteria. Convergent evolution to a similar form in separate bacterial lineages suggests that loop-opening benefits tmRNA function. This argument is strengthened by the discovery of a third bacterial lineage with a loop-opened two-piece tmRNA. Whereas most betaproteobacteria have one-piece tmRNA, a permuted tmRNA gene was found for Dechloromonas aromatica and close relatives. Correspondingly, two tmRNA pieces were identified, at approximately equal abundance and at a level one-fifteenth that of ribosomes, a 189 nt mRNA piece and a 65 nt aminoacylatable piece. Together these pieces were active with purified Escherichia coli translational components, but not alone. The proposed secondary structure combines common tmRNA features differently from the structures of other two-piece forms. The origin of the gene is unclear; horizontal transfer may be indicated by the similarity of the tRNA domain to that from a cyanobacterial two-piece tmRNA, but such transfer would not appear simple since the mRNA domain is most similar to that of other betaproteobacteria.
Collapse
|
15
|
Nozaki H, Ohta N, Matsuzaki M, Misumi O, Kuroiwa T. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. J Mol Evol 2004; 57:377-82. [PMID: 14708571 DOI: 10.1007/s00239-003-2486-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Based on the recent hypothesis on the origin of eukaryotic phototrophs, red algae, green plants, and glaucophytes constitute the "primary photosynthetic eukaryotes" (whose plastids may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis), whereas the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary or tertiary endosymbiotic events (involving a phototrophic eukaryote and a host cell). Although phylogenetic analyses using multiple plastid genes from a wide range of eukaryotic lineages have been carried out, some of the major phylogenetic relationships of plastids remain ambiguous or conflict between different phylogenetic methods used for nucleotide or amino acid substitutions. Therefore, an alternative methodology to infer the plastid phylogeny is needed. Here, we carried out a cladistic analysis of the "loss of plastid genes" after primary endosymbiosis using complete plastid genome sequences from a wide range of eukaryotic phototrophs. Since it is extremely unlikely that plastid genes are regained during plastid evolution, we used the irreversible Camin-Sokal model for our cladistic analysis of the loss of plastid genes. The cladistic analysis of the 274 plastid protein-coding genes resolved the 20 operational taxonomic units representing a wide range of eukaryotic lineages (including three secondary plastid-containing groups) into two large monophyletic groups with high bootstrap values: one corresponded to the red lineage and the other consisted of a large clade composed of the green lineage (green plants and Euglena) and the basal glaucophyte plastid. Although the sister relationship between the green lineage and the Glaucophyta was not resolved in recent phylogenetic studies using amino acid substitutions from multiple plastid genes, it is consistent with the rbcL gene phylogeny and with a recent phylogenetic study using multiple nuclear genes. In addition, our analysis robustly resolved the conflicting/ambiguous phylogenetic positions of secondary plastids in previous phylogenetic studies: the Euglena plastid was sister to the chlorophycean (Chlamydomonas) lineage, and the secondary plastids from the diatom (Odontiella) and cryptophyte (Guillardia) were monophyletic within the red lineage.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
16
|
Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB. The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci U S A 2001; 98:13443-8. [PMID: 11687660 PMCID: PMC60890 DOI: 10.1073/pnas.241503898] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During oxygenic photosynthesis in cyanobacteria and chloroplasts of plants and eukaryotic algae, conversion of light energy to biologically useful chemical energy occurs in the specialized thylakoid membranes. Light-induced charge separation at the reaction centers of photosystems I and II, two multisubunit pigment-protein complexes in the thylakoid membranes, energetically drive sequential photosynthetic electron transfer reactions in this membrane system. In general, in the prokaryotic cyanobacterial cells, the thylakoid membrane is distinctly different from the plasma membrane. We have recently developed a two-dimensional separation procedure to purify thylakoid and plasma membranes from the genetically widely studied cyanobacterium Synechocystis sp. PCC 6803. Immunoblotting analysis demonstrated that the purified plasma membrane contained a number of protein components closely associated with the reaction centers of both photosystems. Moreover, these proteins were assembled in the plasma membrane as chlorophyll-containing multiprotein complexes, as evidenced from nondenaturing green gel and low-temperature fluorescence spectroscopy data. Furthermore, electron paramagnetic resonance spectroscopic analysis showed that in the partially assembled photosystem I core complex in the plasma membrane, the P700 reaction center was capable of undergoing light-induced charge separation. Based on these data, we propose that the plasma membrane, and not the thylakoid membrane, is the site for a number of the early steps of biogenesis of the photosynthetic reaction center complexes in these cyanobacterial cells.
Collapse
Affiliation(s)
- E Zak
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
17
|
Rudi K, Jakobsen KS. Complex evolutionary patterns of tRNA Leu(UAA) group I introns in the cyanobacterial radiation [corrected]. J Bacteriol 1999; 181:3445-51. [PMID: 10348857 PMCID: PMC93812 DOI: 10.1128/jb.181.11.3445-3451.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on the findings that plastids and cyanobacteria have similar group I introns inserted into tRNAUAALeu genes, these introns have been suggested to be immobile and of ancient origin. In contrast, recent evidence suggests lateral transfer of cyanobacterial group I introns located in tRNAUAALeu genes. In light of these new findings, we have readdressed the evolution and lateral transfer of tRNAUAALeu group I introns in cyanobacteral radiation. We determined the presence of introns in 38 different strains, representing the major cyanobacterial lineages, and characterized the introns in 22 of the strains. Notably, two of these strains have two tRNAUAALeu genes, with each of these genes interrupted by introns, while three of the strains have both interrupted and uninterrupted genes. Two evolutionary distinct clusters of tRNA genes, with the genes interrupted by introns belonging to two distinct intron clusters, were identified. We also compared 16S rDNA and intron evolution for both closely and distantly related strains. The distribution of the introns in the clustered groups, as defined from 16S rDNA analysis, indicates relatively recent gain and/or loss of the introns in some of these lineages. The comparative analysis also suggests differences in the phylogenetic trees for 16S rDNA and the tRNAUAALeu group I introns. Taken together, our results show that the evolution of the intron is considerably more complex than previous studies found to be the case. We discuss, based on our results, evolutionary models involving lateral intron transfer and models involving differential loss of the intron.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Blotting, Southern
- Conserved Sequence/genetics
- Cyanobacteria/classification
- Cyanobacteria/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Evolution, Molecular
- Exons/genetics
- Introns/genetics
- Models, Genetic
- Nucleic Acid Conformation
- Phylogeny
- Polymerase Chain Reaction
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
Collapse
Affiliation(s)
- K Rudi
- Division of General Genetics, Department of Biology, University of Oslo, 0315 Oslo, Norway
| | | |
Collapse
|
18
|
Abstract
On the basis of photobiological, evolutionary, paleontological, paleoenvironmental and physiological arguments, a time course for the role of solar ultraviolet radiation (UVR, wavelengths below 400 nm) in the ecology and evolution of cyanobacteria is proposed in which three main periods can be distinguished. An initial stage, before the advent of oxygenic photosynthesis, when high environmental fluxes of UVC (wavelengths below 280 nm) and UVB (280-320 nm) may have depressed the ability of protocyanobacteria to develop large populations or restricted them to UVR refuges. A second stage lasting between 500 and 1500 Ma (million years), started with the appearance of true oxygen-evolving cyanobacteria and the concomitant formation of oxygenated (micro)environments under an oxygen free-atmosphere. In this second stage, the age of UV, the overall importance of UVR must have increased substantially, since the incident fluxes of UVC and UVB remained virtually unchanged, but additionally the UVA portion of the spectrum (320-400 nm) suddenly became biologically injurious and extremely reactive oxygen species must have formed wherever oxygen and UVR spatially coincided. The last period began with the gradual oxygenation of the atmosphere and the formation of the stratospheric ozone shield. The physiological stress due to UVC all but disappeared and the effects of UVB were reduced to a large extent. Evidence in support of this dynamics is drawn from the phylogenetic distribution of biochemical UV-defense mechanisms among cyanobacteria and other microorganisms. The specific physical characteristics of UVR and oxygen exposure in planktonic, sedimentary and terrestrial habitats are used to explore the plausible impact of UVR in each of the periods on the ecological distribution of cyanobacteria.
Collapse
Affiliation(s)
- F Garcia-Pichel
- Max-Planck-Institut für marine Mikrobiologie, Bremen, Germany
| |
Collapse
|
19
|
Pichard SL, Campbell L, Paul JH. Diversity of the ribulose bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl Environ Microbiol 1997; 63:3600-6. [PMID: 9293012 PMCID: PMC168667 DOI: 10.1128/aem.63.9.3600-3606.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phytoplankton of the world's oceans play an integral part in global carbon cycling and food webs by conversion of carbon dioxide into organic carbon. They accomplish this task through the action of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Here we have investigated the phylogenetic diversity in the form I rbcL locus in natural phytoplankton communities of the open ocean and representative clones of marine autotrophic picoplankton by mRNA or DNA amplification and sequencing of a 480 to 483 bp internal fragment of this gene. Five gene sequences were recovered from nucleic acids of natural phytoplankton communities of the Gulf of Mexico. The rbcL genes of two Prochlorococcus isolates and one Synechococcus strain (WH8007) were also sequenced. Sequences were aligned with the database of rbcL genes and subjected to both neighbor-joining and parsimony analyses. The five sequences from the natural phytoplankton community spanned nearly the entire diversity of characterized form I rbcL genes, with some sequences closely related to isolates such as Synechococcus and Prochlorococcus (forms IA and I) and prymnesiophyte algae (form ID), while other sequences were deeply rooted. Unexpectedly, the deep euphotic zone contained an organism that possesses a transcriptionally active rbcL gene closely related to that of a recently characterized manganese-oxidizing bacterium, suggesting that such chemoautotrophs may contribute to the diversity of carbon-fixing organisms in the marine euphotic zone.
Collapse
Affiliation(s)
- S L Pichard
- Department of Marine Science, University of South Florida, St. Petersburg 33701, USA
| | | | | |
Collapse
|
20
|
Stiller JW, Hall BD. The origin of red algae: implications for plastid evolution. Proc Natl Acad Sci U S A 1997; 94:4520-5. [PMID: 9114022 PMCID: PMC20755 DOI: 10.1073/pnas.94.9.4520] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The origin of the red algae has remained an enigma. Historically the Rhodophyta were classified first as plants and later as the most ancient eukaryotic organisms. Recent molecular studies have indicated similarities between red and green plastids, which suggest that there was a single endosymbiotic origin for these organelles in a common ancestor of the rhodophytes and green plants. Previous efforts to confirm or reject this effort by analyses of nuclear DNA have been inconclusive; thus, additional molecular markers are needed to establish the relationship between the host cell lineages, independent of the evolutionary history of their plastids. To furnish such a data set we have sequenced the largest subunit of RNA polymerase II from two red algae, a green alga and a relatively derived amoeboid protist. Phylogenetic analyses provide strong statistical support for an early evolutionary emergence of the Rhodophyta that preceded the origin of the line that led to plants, animals, and fungi. These data, which are congruent with results from extensive analyses of nuclear rDNA, argue for a reexamination of current models of plastid evolution.
Collapse
Affiliation(s)
- J W Stiller
- University of Washington, Department of Botany, Box 355325, Seattle, WA 98195, USA
| | | |
Collapse
|
21
|
La Roche J, van der Staay GW, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AW, Green BR. Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci U S A 1996; 93:15244-8. [PMID: 8986795 PMCID: PMC26388 DOI: 10.1073/pnas.93.26.15244] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The prochlorophytes are oxygenic prokaryotes differing from other cyanobacteria by the presence of a light-harvesting system containing both chlorophylls (Chls) a and b and by the absence of phycobilins. We demonstrate here that the Chl a/b binding proteins from all three known prochlorophyte genera are closely related to IsiA, a cyanobacterial Chl a-binding protein induced by iron starvation, and to CP43, a constitutively expressed Chl a antenna protein of photosystem II. The prochlorophyte Chl a/b protein (pcb) genes do not belong to the extended gene family encoding eukaryotic Chl a/b and Chl a/c light-harvesting proteins. Although higher plants and prochlorophytes share common pigment complements, their light-harvesting systems have evolved independently.
Collapse
Affiliation(s)
- J La Roche
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Garcia-Pichel F, Prufert-Bebout L, Muyzer G. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 1996; 62:3284-91. [PMID: 8795218 PMCID: PMC168124 DOI: 10.1128/aem.62.9.3284-3291.1996] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used micromanipulation to isolate from their environment representative samples of seven geographically distant field populations fitting the description of Microcoleus chthonoplastes (a cyanobacterium) and obtained seven corresponding cultured strains. Samples of both field populations and cultures were phenotypically characterized by microscale techniques, and their partial 16S rRNA gene sequences were compared by denaturing gradient gel electrophoresis and in some cases by sequencing. All field populations and strains were phenotypically extremely coherent, and their 16S rRNA sequences were indistinguishable by DGGE. The sequences determined were identical or virtually identical. Thus, M. chthonoplastes represents a single, well-delimited taxon with a truly cosmopolitan distribution. Comparison with three culture collection strains originally assigned to M. chthonoplastes revealed that strain PCC 7420 belongs to the same tightly delimited group, both phenotypically and in 16S rRNA gene sequence, but that strains SAG 3192 and 10mfx do not.
Collapse
Affiliation(s)
- F Garcia-Pichel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | |
Collapse
|
23
|
Van de Peer Y, Rensing SA, Maier UG, De Wachter R. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci U S A 1996; 93:7732-6. [PMID: 8755544 PMCID: PMC38816 DOI: 10.1073/pnas.93.15.7732] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA.
Collapse
Affiliation(s)
- Y Van de Peer
- Departement Biochemie, Universiteit Antwerpen (UIA), Belgium
| | | | | | | |
Collapse
|