1
|
Nakamura Y, Wada S, Miyake C, Makino A, Suzuki Y. Regulation of photosystems II and I depending on N partitioning to Rubisco in rice leaves: a study using Rubisco-antisense transgenic plants. JOURNAL OF PLANT RESEARCH 2024; 137:1165-1175. [PMID: 39327385 DOI: 10.1007/s10265-024-01582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
We have previously suggested that in rice (Oryza sativa L.) leaves of different ages and N nutrition statuses, photosystems II and I (PSII and PSI, respectively) are regulated depending on N partitioning to Rubisco, which can determine the magnitude of unutilized light energy. The robustness of this mechanism was tested using Rubisco-antisense transgenic rice plants, in which reduced N partitioning to Rubisco markedly increases unutilized light energy. In wild-type plants, N partitioning to Rubisco tended to be smaller in the leaves at lower positions owing to leaf senescence. In the transgenic plants, N partitioning to Rubisco was generally smaller than in the wild-type plants and was relatively constant among leaf positions. The quantum efficiency of PSII [Y(II)] and quantum yield of non-photochemical quenching [Y(NPQ)] correlated positively and negatively, respectively, with N partitioning to Rubisco irrespective of leaf position or genotype. The oxidation levels of the reaction center chlorophyll of PSI (P700) [Y(ND)] negatively correlated with N partitioning to Rubisco. However, in mature and early senescent leaves of the transgenic plants, Y(ND) was markedly lower than expected from N partitioning to Rubisco. These results suggest that in the transgenic plants, the regulation depending on N partitioning to Rubisco is robust for PSII but fails for PSI in mature and early senescing leaves. In these leaves, the magnitudes of P700 oxidation were found to be less than expected from the Y(II) and Y(NPQ) values. The mechanistic reasons and physiological implications of these phenomena are discussed.
Collapse
Affiliation(s)
- Yuta Nakamura
- Graduate School of Arts and Sciences, Iwate University, Morioka, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
- Institute for Excellence in Higher Education, Tohoku University, Sendai, 980-8576, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.
| |
Collapse
|
2
|
Ito K, Sugawara S, Kageyama S, Sawaguchi N, Hyotani T, Miyazawa SI, Makino A, Suzuki Y. Equisetum praealtum and E. hyemale have abundant Rubisco with a high catalytic turnover rate and low CO 2 affinity. JOURNAL OF PLANT RESEARCH 2024; 137:255-264. [PMID: 38112982 DOI: 10.1007/s10265-023-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The kinetic properties of Rubisco, a key enzyme for photosynthesis, have been examined in numerous plant species. However, this information on some plant groups, such as ferns, is scarce. This study examined Rubisco carboxylase activity and leaf Rubisco levels in seven ferns, including four Equisetum plants (E. arvense, E. hyemale, E. praealtum, and E. variegatum), considered living fossils. The turnover rates of Rubisco carboxylation (kcatc) in E. praealtum and E. hyemale were comparable to those in the C4 plants maize (Zea mays) and sorghum (Sorghum bicolor), whose kcatc values are high. Rubisco CO2 affinity, estimated from the percentage of Rubisco carboxylase activity under CO2 unsaturated conditions in kcatc in these Equisetum plants, was low and also comparable to that in maize and sorghum. In contrast, kcatc and CO2 affinities of Rubisco in other ferns, including E. arvense and E. variegatum were comparable with those in C3 plants. The N allocation to Rubisco in the ferns examined was comparable to that in the C3 plants. These results indicate that E. praealtum and E. hyemale have abundant Rubisco with high kcatc and low CO2 affinity, whereas the carboxylase activity and abundance of Rubisco in other ferns were similar to those in C3 plants. Herein, the Rubisco properties of E. praealtum and E. hyemale were discussed regarding their evolution and physiological implications.
Collapse
Affiliation(s)
- Kana Ito
- Graduate School of Arts and Sciences, Iwate University, Morioka, Japan
| | | | - Sota Kageyama
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Naoki Sawaguchi
- Graduate School of Arts and Sciences, Iwate University, Morioka, Japan
| | - Takuro Hyotani
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Present address: Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, Morioka, Japan.
| |
Collapse
|
3
|
Wada N, Kondo I, Tanaka R, Kishimoto J, Miyagi A, Kawai-Yamada M, Mizokami Y, Noguchi K. Dynamic seasonal changes in photosynthesis systems in leaves of Asarum tamaense, an evergreen understorey herbaceous species. ANNALS OF BOTANY 2023; 131:423-436. [PMID: 36579472 PMCID: PMC10072104 DOI: 10.1093/aob/mcac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.
Collapse
Affiliation(s)
- Naoki Wada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| | - Issei Kondo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819Japan
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| |
Collapse
|
4
|
Ozaki H, Mizokami Y, Sugiura D, Sohtome T, Miyake C, Sakai H, Noguchi K. Tight relationship between two photosystems is robust in rice leaves under various nitrogen conditions. JOURNAL OF PLANT RESEARCH 2023; 136:201-210. [PMID: 36536238 DOI: 10.1007/s10265-022-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Leaf nitrogen (N) level affects not only photosynthetic CO2 assimilation, but also two photosystems of the photosynthetic electron transport. The quantum yield of photosystem II [Y(II)] and the non-photochemical yield due to the donor side limitation of photosystem I [Y(ND)], which denotes the fraction of oxidized P700 (P700+) to total P700, oppositely change depending on leaf N level, and the negative correlation between these two parameters has been reported in leaves of plants cultivated at various N levels in growth chambers. Here, we aimed to clarify whether this correlation is maintained after short-term changes in leaf N level, and what parameters are the most responsive to the changes in leaf N level under field conditions. We cultivated rice varieties at two N fertilization levels in paddy fields, treated additional N fertilization to plants grown at low N, and measured parameters of two photosystems of mature leaves. In rice leaves under low N condition, the Y(ND) increased and the photosynthetic linear electron flow was suppressed. In this situation, the accumulation of P700+ can function as excess energy dissipation. After the N addition, both Y(ND) and Y(II) changed, and the negative correlation between them was maintained. We used a newly-developed device to assess the photosystems. This device detected the similar changes in Y(ND) after the N addition, and the negative correlation between Y(ND) and photosynthetic O2 evolution rates was observed in plants under various N conditions. This study has provided strong field evidence that the Y(ND) largely changes depending on leaf N level, and that the Y(II) and Y(ND) are negatively correlated with each other irrespective of leaf N level, varieties and annual variation. The Y(ND) can stably monitor the leaf N status and the linear electron flow under field conditions.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Takayuki Sohtome
- Department of System Development, Bunkoukeiki Co. Ltd, Tokyo, 192-0033, Japan
| | - Chikahiro Miyake
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Hidemitsu Sakai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
5
|
Suzuki Y, Ohsaki K, Takahashi Y, Wada S, Miyake C, Makino A. Behavior of Photosystems II and I Is Modulated Depending on N Partitioning to Rubisco in Mature Leaves Acclimated to Low N Levels and Senescent Leaves in Rice. PLANT & CELL PHYSIOLOGY 2023; 64:55-63. [PMID: 36208302 DOI: 10.1093/pcp/pcac139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In mature leaves acclimated to low N levels and in senescent leaves, photosystems II and I (PSII and PSI, respectively) show typical responses to excess light energy. As CO2 assimilation is not transiently suppressed in these situations, the behavior of PSII and PSI is likely caused by endogenous biochemical changes in photosynthesis. In this study, this subject was studied in rice (Oryza sativa L.). Analysis was performed on mature and senescent leaves of control and N-deficient plants. Total leaf-N, Rubisco and chlorophyll (Chl) levels and their ratios were determined as biochemical parameters of photosynthesis. Total leaf-N, Rubisco and Chl levels decreased in the mature leaves of N-deficient plants and senescent leaves. The percentage of Rubisco-N in the total leaf-N decreased in these leaves, whereas that of Chl-N tended to remain almost constant in mature leaves but increased in senescent leaves. Changes in PSII and PSI parameters were best accounted for by the Rubisco-N percentage, strongly suggesting that the behavior of PSII and PSI is modulated depending on changes in N partitioning to Rubisco in mature leaves acclimated to low N levels and in senescent leaves. It is likely that a decrease in N partitioning to Rubisco leads to a decrease in Rubisco capacity relative to other photosynthetic capacities that inevitably generate excess light energy and that the operation of PSII and PSI is modulated in such situations.
Collapse
Affiliation(s)
- Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| | - Kaho Ohsaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| | - Yuki Takahashi
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550 Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba 468-1, Aoba-ku, Sendai, 980-8572 Japan
| |
Collapse
|
6
|
Suganami M, Konno S, Maruhashi R, Takagi D, Tazoe Y, Wada S, Yamamoto H, Shikanai T, Ishida H, Suzuki Y, Makino A. Expression of flavodiiron protein rescues defects in electron transport around PSI resulting from overproduction of Rubisco activase in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2589-2600. [PMID: 35134146 DOI: 10.1093/jxb/erac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Fragility of photosystem I has been observed in transgenic rice plants that overproduce Rubisco activase (RCA). In this study, we examined the effects of RCA overproduction on the sensitivity of PSI to photoinhibition in three lines of plants overexpressing RCA (RCA-ox). In all the RCA-ox plants the quantum yield of PSI [Y(I)] decreased whilst in contrast the quantum yield of acceptor-side limitation of PSI [Y(NA)] increased, especially under low light conditions. In the transgenic line with the highest RCA content (RCA-ox 1), the quantum yield of PSII [Y(II)] and CO2 assimilation also decreased under low light. When leaves were exposed to high light (2000 μmol photon m-2 s-1) for 60 min, the maximal activity of PSI (Pm) drastically decreased in RCA-ox 1. These results suggested that overproduction of RCA disturbs PSI electron transport control, thus increasing the susceptibility of PSI to photoinhibition. When flavodiiron protein (FLV), which functions as a large electron sink downstream of PSI, was expressed in the RCA-ox 1 background (RCA-FLV), PSI and PSII parameters, and CO2 assimilation were recovered to wild-type levels. Thus, expression of FLV restored the robustness of PSI in RCA-ox plants.
Collapse
Affiliation(s)
- Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - So Konno
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Ryo Maruhashi
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Daisuke Takagi
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Youshi Tazoe
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroyuki Ishida
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
7
|
Ozaki H, Takagi D, Mizokami Y, Tokida T, Nakamura H, Sakai H, Hasegawa T, Noguchi K. Low N level increases the susceptibility of PSI to photoinhibition induced by short repetitive flashes in leaves of different rice varieties. PHYSIOLOGIA PLANTARUM 2022; 174:e13644. [PMID: 35112363 DOI: 10.1111/ppl.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The recovery from photoinhibition is much slower in photosystem (PS) I than in PSII; therefore, the susceptibility of PSI to photoinhibition is important with respect to photosynthetic production under special physiological conditions. Previous studies have shown that repetitive short-pulse (rSP) illumination selectively induces PSI photoinhibition. Depending on the growth light intensity or the variety/species of the plant, PSI photoinhibition is different, but the underlying mechanisms remain unknown. Here, we aimed to clarify whether the differences in the susceptibility of PSI to photoinhibition depend on environmental factors or on rice varieties and which physiological properties of the plant are related to this susceptibility. We exposed mature leaves of rice plants to rSP illumination. We examined the effects of elevated CO2 concentration and low N during growth on the susceptibility of PSI to photoinhibition and compared it in 12 different varieties. We fitted the decrease in the quantum yield of PSI during rSP illumination and estimated a parameter indicating susceptibility. Low N level increased susceptibility, whereas elevated CO2 concentration did not. The susceptibility differed among different rice varieties, and many indica varieties showed higher susceptibility than the temperate japonica varieties. Susceptibility was negatively correlated with the total chlorophyll content and N content. However, the decrease in P m ' value, an indicator of damaged PSI, was positively correlated with chlorophyll content. This suggests that in leaves with a larger electron transport capacity, the overall PSI activity may be less susceptible to photoinhibition, but more damaged PSI may accumulate during rSP illumination.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Daisuke Takagi
- Department of Biological and Environmental Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takeshi Tokida
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | | | - Hidemitsu Sakai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Toshihiro Hasegawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
8
|
Divya Kuravi S, Venkata Mohan S. Mixotrophic cultivation of Monoraphidium sp. In dairy wastewater using Flat-Panel photobioreactor and photosynthetic performance. BIORESOURCE TECHNOLOGY 2022; 348:126671. [PMID: 34995780 DOI: 10.1016/j.biortech.2021.126671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Monoraphidium sp. SVMIICT6 was isolated and mixotrophically cultivated in a flat-panel photobioreactor (8 days) to treat synthetic dairy wastewater. COD, nitrates, and phosphates removal efficiencies were 75%, 85%, and 60% respectively. The nutrient removal supported the growth of microalgae in terms of biomass productivity (50 mg L-1d-1), and accumulation of carbohydrate (228.8 mg g-1), protein (88.8 mg g-1), and lipid content (25%). Elemental analysis of microalgal biomass revealed carbon (50.6%) as a major fraction. Quantum yield and electron transport rate (ETR) from PSII to PSI increased with time correlating well with chlorophyll pigments (89.53 mg g-1). The lipid profile resulted in a major fraction of Heptadecanoic acid (C17:0; 51.5%), followed by Myristoleic acid (C14:1; 24.3%) with potent nutraceutical properties. The isolated strain showed efficient treatment of dairy wastewater yielding biomass for diverse applications.
Collapse
Affiliation(s)
- Sri Divya Kuravi
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Hippler M, Minagawa J, Takahashi Y. Photosynthesis and Chloroplast Regulation-Balancing Photosynthesis and Photoprotection under Changing Environments. PLANT & CELL PHYSIOLOGY 2021; 62:1059-1062. [PMID: 34528684 DOI: 10.1093/pcp/pcab139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|