1
|
Lv S, Tai F, Guo J, Jiang P, Lin K, Wang D, Zhang X, Li Y. Phosphatidylserine Synthase from Salicornia europaea Is Involved in Plant Salt Tolerance by Regulating Plasma Membrane Stability. PLANT & CELL PHYSIOLOGY 2021; 62:66-79. [PMID: 33141223 PMCID: PMC7991898 DOI: 10.1093/pcp/pcaa141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/24/2020] [Indexed: 05/05/2023]
Abstract
Salinity-induced lipid alterations have been reported in many plant species; however, how lipid biosynthesis and metabolism are regulated and how lipids work in plant salt tolerance are much less studied. Here, a constitutively much higher phosphatidylserine (PS) content in the plasma membrane (PM) was found in the euhalophyte Salicornia europaea than in Arabidopsis. A gene encoding PS synthase (PSS) was subsequently isolated from S. europaea, named SePSS, which was induced by salinity. Multiple alignments and phylogenetic analysis suggested that SePSS belongs to a base exchange-type PSS, which localises to the endoplasmic reticulum. Knockdown of SePSS in S. europaea suspension cells resulted in reduced PS content, decreased cell survival rate, and increased PM depolarization and K+ efflux under 400 or 800 mM NaCl. By contrast, the upregulation of SePSS leads to increased PS and phosphatidylethanolamine levels and enhanced salt tolerance in Arabidopsis, along with a lower accumulation of reactive oxygen species, less membrane injury, less PM depolarization and higher K+/Na+ in the transgenic lines than in wild-type (WT). These results suggest a positive correlation between PS levels and plant salt tolerance, and that SePSS participates in plant salt tolerance by regulating PS levels, hence PM potential and permeability, which help maintain ion homeostasis. Our work provides a potential strategy for improving plant growth under multiple stresses.
Collapse
Affiliation(s)
- Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Laboratory of Genetics and Breeding of Marine Organism,�College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Linda Liu and Partners, Beijing 100000, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Corresponding author: E-mail, ; Fax, +86 10 62836691
| |
Collapse
|
2
|
Flis VV, Daum G. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb Perspect Biol 2013; 5:5/6/a013235. [PMID: 23732475 DOI: 10.1101/cshperspect.a013235] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis.
Collapse
Affiliation(s)
- Vid V Flis
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | | |
Collapse
|
3
|
Yamaoka Y, Yu Y, Mizoi J, Fujiki Y, Saito K, Nishijima M, Lee Y, Nishida I. PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:648-61. [PMID: 21554450 DOI: 10.1111/j.1365-313x.2011.04624.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Laboratory of Plant Molecular Physiology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Larsson KE, Nyström B, Liljenberg C. A phosphatidylserine decarboxylase activity in root cells of oat (Avena sativa) is involved in altering membrane phospholipid composition during drought stress acclimation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:211-9. [PMID: 16762557 DOI: 10.1016/j.plaphy.2006.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Indexed: 05/10/2023]
Abstract
During acclimation to drought stress, the lipid composition of oat root cell membranes is altered. The level of phosphatidylethanolamine (PE), a non-bilayer forming lipid, is increased relative to the bilayer-forming lipid phosphatidylcholine (PC). These changes are believed to increase stress tolerance by increasing the flexibility of the membranes. To elucidate if de novo lipid synthesis is involved in altering membrane lipid composition, oat plants, acclimated or non-acclimated, were incubated in vivo with radioactively labelled lipid precursors. The labelling pattern indicated that de novo synthesis, at least partly, is causing the alterations. In plants, phospholipids can be synthesized by the Kennedy pathway, with addition of activated head groups to diacylglycerol (DAG) or, alternatively, via the CDP-DAG pathway, where phospahtidylserine (PS) is decarboxylated to form PE. To reveal the importance of the respective pathways during acclimation, we studied the effect of a decarboxylase inhibitor and the relative incorporation of [(3)H]-serine and [(14)C]-ethanolamine in vivo. Activities of CTP:ethanolaminephosphate cytidyltransferase (EC 2.7.7.14), phosphatidylserine decarboxylase (EC 4.1.1.65) and phosphatidylserine synthase; CDP-DAG:L-serine o-phosphatidyltransferase (EC 2.7.8.8) were measured and additionally, the presence of a PS decarboxylase (PSD1) in oat was confirmed by immunoblotting. The results suggest that PE synthesis via the Kennedy pathway is downregulated during acclimation and that synthesis by PS decarboxylation, via the CDP-DAG pathway, is increased, mainly through an increased activity of PS synthase.
Collapse
Affiliation(s)
- Karin E Larsson
- Department of Botany, Göteborg University, Carl Skottsbergs g. 22 B, P.O. Box 461, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
5
|
Birner R, Daum G. Biogenesis and cellular dynamics of aminoglycerophospholipids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:273-323. [PMID: 12696595 DOI: 10.1016/s0074-7696(05)25007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoglycerophospholipids phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) comprise about 80% of total cellular phospholipids in most cell types. While the major function of PtdCho in eukaryotes and PtdEtn in prokaryotes is that of bulk membrane lipids, PtdSer is a minor component and appears to play a more specialized role in the plasma membrane of eukaryotes, e.g., in cell recognition processes. All three aminoglycerophospholipid classes are essential in mammals, whereas prokaryotes and lower eukaryotes such as yeast appear to be more flexible regarding their aminoglycerophospholipid requirement. Since different subcellular compartments of eukaryotes, namely the endoplasmic reticulum and mitochondria, contribute to the biosynthetic sequence of aminoglycerophospholipid formation, intracellular transport, sorting, and specific function of these lipids in different organelles are of special interest.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
6
|
Rontein D, Nishida I, Tashiro G, Yoshioka K, Wu WI, Voelker DR, Basset G, Hanson AD. Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem 2001; 276:35523-9. [PMID: 11461929 DOI: 10.1074/jbc.m106038200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The established pathways from serine to ethanolamine are indirect and involve decarboxylation of phosphatidylserine. Here we show that plants can decarboxylate serine directly. Using a radioassay based on ethanolamine (Etn) formation, pyridoxal 5'-phosphate-dependent l-serine decarboxylase (SDC) activity was readily detected in soluble extracts from leaves of diverse species, including spinach, Arabidopsis, and rapeseed. A putative Arabidopsis SDC cDNA was identified by searching GenBank for sequences homologous to other amino acid decarboxylases and shown by expression in Escherichia coli to encode a soluble protein with SDC activity. This cDNA was further authenticated by complementing the Etn requirement of a yeast psd1 psd2 mutant. In a parallel approach, a cDNA was isolated from a rapeseed library by its ability to complement the Etn requirement of a yeast cho1 mutant and shown by expression in E. coli to specify SDC. The deduced Arabidopsis and rapeseed SDC polypeptides are 90% identical, lack obvious targeting signals, and belong to amino acid decarboxylase group II. Recombinant Arabidopsis SDC was shown to exist as a tetramer and to contain pyridoxal 5'-phosphate. It does not attack d-serine, l-phosphoserine, other l-amino acids, or phosphatidylserine and is not inhibited by Etn, choline, or their phosphoesters. As a soluble, pyridoxal 5'-phosphate enzyme, SDC contrasts sharply with phosphatidylserine decarboxylases, which are membrane proteins that have a pyruvoyl cofactor.
Collapse
Affiliation(s)
- D Rontein
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|