1
|
Ali A, Shahbaz M, Ölmez F, Fatima N, Umar UUD, Ali MA, Akram M, Seelan JSS, Baloch FS. RNA interference: a promising biotechnological approach to combat plant pathogens, mechanism and future prospects. World J Microbiol Biotechnol 2024; 40:339. [PMID: 39358476 DOI: 10.1007/s11274-024-04143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Plant pathogens and other biological pests represent significant obstacles to crop Protection worldwide. Even though there are many effective conventional methods for controlling plant diseases, new methods that are also effective, environmentally safe, and cost-effective are required. While plant breeding has traditionally been used to manipulate the plant genome to develop resistant cultivars for controlling plant diseases, the emergence of genetic engineering has introduced a completely new approach to render plants resistant to bacteria, nematodes, fungi, and viruses. The RNA interference (RNAi) approach has recently emerged as a potentially useful tool for mitigating the inherent risks associated with the development of conventional transgenics. These risks include the use of specific transgenes, gene control sequences, or marker genes. Utilizing RNAi to silence certain genes is a promising solution to this dilemma as disease-resistant transgenic plants can be generated within a legislative structure. Recent investigations have shown that using target double stranded RNAs via an effective vector system can produce significant silencing effects. Both dsRNA-containing crop sprays and transgenic plants carrying RNAi vectors have proven effective in controlling plant diseases that threaten commercially significant crop species. This article discusses the methods and applications of the most recent RNAi technology for reducing plant diseases to ensure sustainable agricultural yields.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, 54000, Lahore, Punjab, Pakistan
| | - Ummad Ud Din Umar
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus, Bosan Road, 60800, Multan, Pakistan
| | - Md Arshad Ali
- Biotechnology Program, Faculty of Science and Natural, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, 63100, Bahawalpur, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia.
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir Mersin, Turkey.
| |
Collapse
|
2
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
3
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
4
|
Verma P, Kumari P, Negi S, Yadav G, Gaur V. Holliday junction resolution by At-HIGLE: an SLX1 lineage endonuclease from Arabidopsis thaliana with a novel in-built regulatory mechanism. Nucleic Acids Res 2022; 50:4630-4646. [PMID: 35412622 PMCID: PMC9071465 DOI: 10.1093/nar/gkac239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Holliday junction is the key homologous recombination intermediate, resolved by structure-selective endonucleases (SSEs). SLX1 is the most promiscuous SSE of the GIY-YIG nuclease superfamily. In fungi and animals, SLX1 nuclease activity relies on a non-enzymatic partner, SLX4, but no SLX1-SLX4 like complex has ever been characterized in plants. Plants exhibit specialized DNA repair and recombination machinery. Based on sequence similarity with the GIY-YIG nuclease domain of SLX1 proteins from fungi and animals, At-HIGLE was identified to be a possible SLX1 like nuclease from plants. Here, we elucidated the crystal structure of the At-HIGLE nuclease domain from Arabidopsis thaliana, establishing it as a member of the SLX1-lineage of the GIY-YIG superfamily with structural changes in DNA interacting regions. We show that At-HIGLE can process branched-DNA molecules without an SLX4 like protein. Unlike fungal SLX1, At-HIGLE exists as a catalytically active homodimer capable of generating two coordinated nicks during HJ resolution. Truncating the extended C-terminal region of At-HIGLE increases its catalytic activity, changes the nicking pattern, and monomerizes At-HIGLE. Overall, we elucidated the first structure of a plant SLX1-lineage protein, showed its HJ resolving activity independent of any regulatory protein, and identified an in-built novel regulatory mechanism engaging its C-terminal region.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Poonam Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shreya Negi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
5
|
Carreira R, Aguado FJ, Hurtado-Nieves V, Blanco MG. Canonical and novel non-canonical activities of the Holliday junction resolvase Yen1. Nucleic Acids Res 2021; 50:259-280. [PMID: 34928393 PMCID: PMC8754655 DOI: 10.1093/nar/gkab1225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022] Open
Abstract
Yen1 and GEN1 are members of the Rad2/XPG family of nucleases that were identified as the first canonical nuclear Holliday junction (HJ) resolvases in budding yeast and humans due to their ability to introduce two symmetric, coordinated incisions on opposite strands of the HJ, yielding nicked DNA products that could be readily ligated. While GEN1 has been extensively characterized in vitro, much less is known about the biochemistry of Yen1. Here, we have performed the first in-depth characterization of purified Yen1. We confirmed that Yen1 resembles GEN1 in many aspects, including range of substrates targeted, position of most incisions they produce or the increase in the first incision rate by assembly of a dimer on a HJ, despite minor differences. However, we demonstrate that Yen1 is endowed with additional nuclease activities, like a nick-specific 5′-3′ exonuclease or HJ arm-chopping that could apparently blur its classification as a canonical HJ resolvase. Despite this, we show that Yen1 fulfils the requirements of a canonical HJ resolvase and hypothesize that its wider array of nuclease activities might contribute to its function in the removal of persistent recombination or replication intermediates.
Collapse
Affiliation(s)
- Raquel Carreira
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Vanesa Hurtado-Nieves
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
6
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Rao GS, Deveshwar P, Sharma M, Kapoor S, Rao KV. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties. PLANT MOLECULAR BIOLOGY 2018; 96:35-51. [PMID: 29090429 DOI: 10.1007/s11103-017-0678-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/24/2017] [Indexed: 05/22/2023]
Abstract
We have developed a unique male-sterility and fertility-restoration system in rice by combining Brassica napus cysteine-protease gene (BnCysP1) with anther-specific P12 promoter of rice for facilitating production of hybrid varieties. In diverse crop plants, male-sterility has been exploited as a useful approach for production of hybrid varieties to harness the benefits of hybrid vigour. The promoter region of Os12bglu38 gene of rice has been isolated from the developing panicles and was designated as P12. The promoter was fused with gusA reporter gene and was expressed in Arabidopsis and rice systems. Transgenic plants exhibited GUS activity in tapetal cells and pollen of the developing anthers indicating anther/pollen-specific expression of the promoter. For engineering nuclear male sterility, the coding region of Brassica napus cysteine protease1 (BnCysP1) was isolated from developing seeds and fused to P12 promoter. Transgenic rice plants obtained with P12-BnCysP1 failed to produce functional pollen grains. The F1 seeds obtained from BnCysP1 male-sterile plants and untransformed controls showed 1:1 (tolerant:sensitive) ratio when germinated on the MS medium supplemented with phosphinothricin (5 mg/l), confirming that the male sterility has been successfully engineered in rice. For male fertility restoration, transgenic rice plants carrying BnCysP1Si silencing system were developed. The pollination of BnCysP1 male-sterile (female-fertile) plants with BnCysP1Si pollen resulted in normal grain filling. The F1 seeds of BnCysP1 × BnCysP1Si when germinated on the MS basal medium containing PPT (5 mg/l) and hygromycin (70 mg/l) exhibited 1:1 (tolerant:sensitive) ratio and the tolerant plants invariably showed normal grain filling. The overall results clearly suggest that the customized male-sterility & fertility-restoration system can be exploited for quality hybrid seed production in various crops.
Collapse
Affiliation(s)
| | - Priyanka Deveshwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Malini Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
8
|
Rao GS, Tyagi AK, Rao KV. Development of an inducible male-sterility system in rice through pollen-specific expression of l-ornithinase (argE) gene of E. coli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:139-147. [PMID: 28167027 DOI: 10.1016/j.plantsci.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 05/22/2023]
Abstract
In the present investigation, an inducible male-sterility system has been developed in the rice. In order to introduce inducible male-sterility, the coding region of l-ornithinase (argE) gene of E. coli was fused to the Oryza sativa indica pollen allergen (OSIPA) promoter sequence which is known to function specifically in the pollen grains. Transgenic plants were obtained with argE gene and the transgenic status of plants was confirmed by PCR and Southern blot analyses. RT-PCR analysis confirmed the tissue-specific expression of argE in the anthers of transgenic rice plants. Transgenic rice plants expressing argE, after application of N-acetyl-phosphinothricin (N-ac-PPT), became completely male-sterile owing to the pollen-specific expression of argE. However, argE-transgenic plants were found to be self fertile when N-ac-PPT was not applied. Normal fertile seeds were obtained from the cross pollination between male-sterile argE transgenics and untransformed control plants, indicating that the female fertility is not affected by the N-ac-PPT treatment. These results clearly suggest that the expression of argE gene affects only the male gametophyte but not the gynoecium development. Induction of complete male-sterility in the rice is a first of its kind, and moreover this male- sterility system does not require the deployment of any specific restorer line.
Collapse
Affiliation(s)
| | - Akhilesh Kumar Tyagi
- Department of Plant Molecular Biology, Delhi University, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
9
|
Ishii K, Kazama Y, Morita R, Hirano T, Ikeda T, Usuda S, Hayashi Y, Ohbu S, Motoyama R, Nagamura Y, Abe T. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation. PLoS One 2016; 11:e0160061. [PMID: 27462908 PMCID: PMC4962992 DOI: 10.1371/journal.pone.0160061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.
Collapse
Affiliation(s)
| | | | | | - Tomonari Hirano
- RIKEN Nishina Center, Wako, Saitama, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | | - Sumie Ohbu
- RIKEN Nishina Center, Wako, Saitama, Japan
| | - Ritsuko Motoyama
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Nagamura
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Tomoko Abe
- RIKEN Nishina Center, Wako, Saitama, Japan
| |
Collapse
|
10
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
11
|
Li Q, Deng Z, Gong C, Wang T. The Rice Eukaryotic Translation Initiation Factor 3 Subunit f (OseIF3f) Is Involved in Microgametogenesis. FRONTIERS IN PLANT SCIENCE 2016; 7:532. [PMID: 27200010 PMCID: PMC4844609 DOI: 10.3389/fpls.2016.00532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/04/2016] [Indexed: 05/13/2023]
Abstract
Microgametogenesis is the post-meiotic pollen developmental phase when unicellular microspores develop into mature tricellular pollen. In rice, microgametogenesis can influence grain yields to a great degree because pollen abortion occurs more easily during microgametogenesis than during other stages of pollen development. However, our knowledge of the genes involved in microgametogenesis in rice remains limited. Due to the dependence of pollen development on the regulatory mechanisms of protein expression, we identified the encoding gene of the eukaryotic translation initiation factor 3, subunit f in Oryza sativa (OseIF3f). Immunoprecipitation combined with mass spectrometry confirmed that OseIF3f was a subunit of rice eIF3, which consisted of at least 12 subunits including eIF3a, eIF3b, eIF3c, eIF3d, eIF3e, eIF3f, eIF3g, eIF3h, eIF3i, eIF3k, eIF3l, and eIF3m. OseIF3f showed high mRNA levels in immature florets and is highly abundant in developing anthers. Subcellular localization analysis showed that OseIF3f was localized to the cytosol and the endoplasmic reticulum in rice root cells. We further analyzed the biological function of OseIF3f using the double-stranded RNA-mediated interference (RNAi) approach. The OseIF3f-RNAi lines grew normally at the vegetative stage but displayed a large reduction in seed production and pollen viability, which is associated with the down-regulation of OseIF3f. Further cytological observations of pollen development revealed that the OseIF3f-RNAi lines showed no obvious abnormalities at the male meiotic stage and the unicellular microspore stage. However, compared to the wild-type, OseIF3f-RNAi lines contained a higher percentage of arrested unicellular pollen at the bicellular stage and a higher percentage of arrested unicellular and bicellular pollen, and aborted pollen at the tricellular stage. These results indicate that OseIF3f plays a role in microgametogenesis.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhuyun Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Chunyan Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Tai Wang,
| |
Collapse
|
12
|
Bauknecht M, Kobbe D. AtGEN1 and AtSEND1, two paralogs in Arabidopsis, possess holliday junction resolvase activity. PLANT PHYSIOLOGY 2014; 166:202-16. [PMID: 25037209 PMCID: PMC4149707 DOI: 10.1104/pp.114.237834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/10/2014] [Indexed: 05/02/2023]
Abstract
Holliday junctions (HJs) are physical links between homologous DNA molecules that arise as central intermediary structures during homologous recombination and repair in meiotic and somatic cells. It is necessary for these structures to be resolved to ensure correct chromosome segregation and other functions. In eukaryotes, including plants, homologs of a gene called XPG-like endonuclease1 (GEN1) have been identified that process HJs in a manner analogous to the HJ resolvases of phages, archaea, and bacteria. Here, we report that Arabidopsis (Arabidopsis thaliana), a eukaryotic organism, has two functional GEN1 homologs instead of one. Like all known eukaryotic resolvases, AtGEN1 and Arabidopsis single-strand DNA endonuclease1 both belong to class IV of the Rad2/XPG family of nucleases. Their resolvase activity shares the characteristics of the Escherichia coli radiation and UV sensitive C paradigm for resolvases, which involves resolving HJs by symmetrically oriented incisions in two opposing strands. This leads to ligatable products without the need for further processing. The observation that the sequence context influences the cleavage by the enzymes can be interpreted as a hint for the existence of sequence specificity. The two Arabidopsis paralogs differ in their preferred sequences. The precise cleavage positions observed for the resolution of mobile nicked HJs suggest that these cleavage positions are determined by both the substrate structure and the sequence context at the junction point.
Collapse
Affiliation(s)
- Markus Bauknecht
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Fernández Gómez J, Wilson ZA. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:765-77. [PMID: 24684666 DOI: 10.1111/pbi.12181] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/18/2014] [Accepted: 02/10/2014] [Indexed: 05/22/2023]
Abstract
Controlling pollen development is of major commercial importance in generating hybrid crops and selective breeding, but characterized genes for male sterility in crops are rare, with no current examples in barley. However, translation of knowledge from model species is now providing opportunities to understand and manipulate such processes in economically important crops. We have used information from regulatory networks in Arabidopsis to identify and functionally characterize a barley PHD transcription factor MALE STERTILITY1 (MS1), which expresses in the anther tapetum and plays a critical role during pollen development. Comparative analysis of Arabidopsis, rice and Brachypodium genomes was used to identify conserved regions in MS1 for primer design to amplify the barley MS1 gene; RACE-PCR was subsequently used to generate the full-length sequence. This gene shows anther-specific tapetal expression, between late tetrad stage and early microspore release. HvMS1 silencing and overexpression in barley resulted in male sterility. Additionally, HvMS1 cDNA, controlled by the native Arabidopsis MS1 promoter, successfully complemented the homozygous ms1 Arabidopsis mutant. These results confirm the conservation of MS1 function in higher plants and in particular in temperate cereals. This has provided the first example of a characterized male sterility gene in barley, which presents a valuable tool for the future control of male fertility in barley for hybrid development.
Collapse
Affiliation(s)
- José Fernández Gómez
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | |
Collapse
|
14
|
Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. PLANTA 2014; 239:543-64. [PMID: 24402564 DOI: 10.1007/s00425-013-2019-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 05/18/2023]
Abstract
The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.
Collapse
Affiliation(s)
- Satyajit Saurabh
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835125, India
| | | | | |
Collapse
|
15
|
Sinha R, Rajam MV. RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. PLANT MOLECULAR BIOLOGY 2013; 82:169-80. [PMID: 23543321 DOI: 10.1007/s11103-013-0051-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/23/2013] [Indexed: 05/06/2023]
Abstract
Polyamines play very important role in various cellular metabolic functions, including floral induction, floral differentiation and fertility regulation. In the present study, S-adenosylmethionine decarboxylase (SAMDC), a key gene involved in polyamine biosynthesis, has been targeted in tapetal tissue of tomato using RNAi to examine its effect on tapetum development and pollen viability. The target SAMDC gene fragments of three homologues were cloned in a hairpin RNA construct under the control of tapetal-specific A9 promoter, which was used to generate several RNAi tomato plants. These RNAi lines expressed the intended small interfering RNAs in the anther and showed the aborted and sterile pollen exhibiting shrunken and distorted morphology. These RNAi tomato plants having sterile pollen, failed to set fruits but female fertility of the plants remained unaffected as cross pollination resulted in fruit setting. Expression profiling of SAMDC genes showed considerable decrease in transcripts of SAMDC1 (5-8 fold) and SAMDC2 and SAMDC3 (2-3 fold) in the anthers of RNAi plants. The other polyamine biosynthesis genes, ADC and SPDSYN exhibited ~1.5 fold decrease in their transcript levels. Presence of siRNA molecules specific to SAMDC homologues in anther and tapetal-specific activity of A9 promoter as shown with GUS reporter system of RNAi plants suggested down-regulation of the target genes in tapetum by RNAi. These observations indicate the importance of SAMDC, in turn polyamines in pollen development, and thus tapetum-specific down-regulation of SAMDC genes using RNAi can be used for developing male sterile plants.
Collapse
Affiliation(s)
- Ranjita Sinha
- Plant Polyamine, Transgenic and RNAi Laboratory, Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | |
Collapse
|
16
|
Chen L, Wang F, Wang X, Liu YG. Robust one-tube Ω-PCR strategy accelerates precise sequence modification of plasmids for functional genomics. PLANT & CELL PHYSIOLOGY 2013; 54:634-42. [PMID: 23335613 PMCID: PMC3612181 DOI: 10.1093/pcp/pct009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/10/2013] [Indexed: 05/20/2023]
Abstract
Functional genomics requires vector construction for protein expression and functional characterization of target genes; therefore, a simple, flexible and low-cost molecular manipulation strategy will be highly advantageous for genomics approaches. Here, we describe a Ω-PCR strategy that enables multiple types of sequence modification, including precise insertion, deletion and substitution, in any position of a circular plasmid. Ω-PCR is based on an overlap extension site-directed mutagenesis technique, and is named for its characteristic Ω-shaped secondary structure during PCR. Ω-PCR can be performed either in two steps, or in one tube in combination with exonuclease I treatment. These strategies have wide applications for protein engineering, gene function analysis and in vitro gene splicing.
Collapse
Affiliation(s)
- Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | | | | | | |
Collapse
|
17
|
Guo JX, Liu YG. Molecular control of male reproductive development and pollen fertility in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:967-78, i. [PMID: 23025662 DOI: 10.1111/j.1744-7909.2012.01172.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Anther development and male fertility are essential biological processes for flowering plants and are important for crop seed production. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Rice (Oryza sativa L.) male sterility phenotypes, including genic male sterility, hybrid male sterility, and cytoplasmic male sterility, are generally caused by mutations of fertility-related genes, by incompatible interactions between divergent allelic or non-allelic genes, or by genetic incompatibilities between cytoplasmic and nuclear genomes. Here, we review the recent advances in the molecular basis of anther development and male fertility-sterility conversion in specific genetic backgrounds, and the interactions with certain environmental factors. The highlighted findings in this review have significant implications in both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Jing-Xin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
18
|
Andrieu A, Breitler JC, Siré C, Meynard D, Gantet P, Guiderdoni E. An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. RICE (NEW YORK, N.Y.) 2012; 5:23. [PMID: 24279881 PMCID: PMC4883685 DOI: 10.1186/1939-8433-5-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 07/12/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Localized introduction and transient expression of T-DNA constructs mediated by agro-infiltration of leaf tissues has been largely used in dicot plants for analyzing the transitivity and the cell-to cell movement of the RNAi signal. In cereals, however, the morphology of the leaf and particularly the structure of the leaf epidermis, prevent infiltration of a bacterial suspension in cells by simple pressure, a method otherwise successful in dicots leaves. This study aimed at establishing a rapid method for the functional analysis of rice genes based on the triggering of RNA interference (RNAi) following Agrobacterium-mediated transient transformation of leaves. RESULTS Using an agro-infection protocol combining a wound treatment and a surfactant, we were able to obtain in a reliable manner transient expression of a T-DNA-borne uidA gene in leaf cells of japonica and indica rice cultivars. Using this protocol to transiently inhibit gene expression in leaf cells, we introduced hairpin RNA (hpRNA) T-DNA constructs containing gene specific tags of the phytoene desaturase (OsPDS) and of the SLENDER 1 (OsSLR1) genes previously proven to trigger RNAi of target genes in stable transformants. SiRNA accumulation was observed in the agro-infected leaf area for both constructs indicating successful triggering of the silencing signal. Accumulation of secondary siRNA was observed in both stably and transiently transformed leaf tissues expressing the HpRNA OsSLR1 construct. Gene silencing signalling was investigated in monitoring the parallel time course of OsPDS-derived mRNA and siRNA accumulation in the agro-infiltrated leaf area and adjacent systemic sectors. The sensitive RT-Q-PCR method evidenced a consistent, parallel decrease of OsPDS transcripts in both the agroinfiltred and adjacent tissues, with a time lag for the latter. CONCLUSIONS These results indicate that the method is efficient at inducing gene silencing in the agro-infected leaf area. The transfer of low amounts of siRNA, probably occurring passively through the symplastic pathway from the agro-infected area, seemed sufficient to trigger degradation of target transcripts in the adjacent tissues. This method is therefore well suited to study the cell-to-cell movement of the silencing signal in a monocot plant and further test the functionality of natural and artificial miRNA expression constructs.
Collapse
Affiliation(s)
- Aurélie Andrieu
- />CIRAD, UMR AGAP, TAA108/03, Av Agropolis, F-34398, Montpellier, Cedex 05 France
| | | | - Christelle Siré
- />CIRAD, UMR AGAP, TAA108/03, Av Agropolis, F-34398, Montpellier, Cedex 05 France
| | - Donaldo Meynard
- />CIRAD, UMR AGAP, TAA108/03, Av Agropolis, F-34398, Montpellier, Cedex 05 France
| | - Pascal Gantet
- />Université Montpellier II, UMR DIADE, F-34398, Montpellier, Cedex 05 France
| | - Emmanuel Guiderdoni
- />CIRAD, UMR AGAP, TAA108/03, Av Agropolis, F-34398, Montpellier, Cedex 05 France
| |
Collapse
|
19
|
Moritoh S, Eun CH, Ono A, Asao H, Okano Y, Yamaguchi K, Shimatani Z, Koizumi A, Terada R. Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:85-98. [PMID: 22380881 DOI: 10.1111/j.1365-313x.2012.04974.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent methylome analyses of the entire Arabidopsis thaliana genome using various mutants have provided detailed information about the DNA methylation pattern and its function. However, information about DNA methylation in other plants is limited, partly because of the lack of mutants. To study DNA methylation in rice (Oryza sativa) we applied homologous recombination-mediated gene targeting to generate targeted disruptants of OsDRM2, a rice orthologue of DOMAINS REARRANGED METHYLASE 1 and 2 (DRM1/2), which encode DNA methyltransferases responsible for de novo and non-CG methylation in Arabidopsis. Whereas Arabidopsis drm1 drm2 double mutants showed no morphological alterations, targeted disruptants of rice OsDRM2 displayed pleiotropic developmental phenotypes in both vegetative and reproductive stages, including growth defects, semi-dwarfed stature, reductions in tiller number, delayed heading or no heading, abnormal panicle and spikelet morphology, and complete sterility. In these osdrm2 disruptants, a 13.9% decrease in 5-methylcytosine was observed by HPLC analysis. The CG and non-CG methylation levels were reduced in RIRE7/CRR1 retrotransposons, and in 5S rDNA repeats. Associated transcriptional activation was detected in RIRE7/CRR1. Furthermore, de novo methylation by an RNA-directed DNA methylation (RdDM) process involving transgene-derived exogenous small interfering RNA (siRNA) was deficient in osdrm2-disrupted cells. Impaired growth and abnormal DNA methylation of osdrm2 disruptants were restored by the complementation of wild-type OsDRM2 cDNA. Our results suggest that OsDRM2 is responsible for de novo, CG and non-CG methylation in rice genomic sequences, and that DNA methylation regulated by OsDRM2 is essential for proper rice development in both vegetative and reproductive stages.
Collapse
Affiliation(s)
- Satoru Moritoh
- National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Moriguchi Y, Ujino-Ihara T, Uchiyama K, Futamura N, Saito M, Ueno S, Matsumoto A, Tani N, Taira H, Shinohara K, Tsumura Y. The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genomics 2012; 13:95. [PMID: 22424262 PMCID: PMC3386010 DOI: 10.1186/1471-2164-13-95] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 03/16/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND High-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems. RESULTS We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf) that is closely linked to the ms1 gene, being separated from it by only 0.5 cM. CONCLUSIONS Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity.
Collapse
Affiliation(s)
- Yoshinari Moriguchi
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Kentaro Uchiyama
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Norihiro Futamura
- Department of Molecular and Cell Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Maki Saito
- Toyama Prefectural Agricultural Forestry and Fishieries Research Center, Forestry Research Institute, Yoshimine 3, Tateyama-cho, Nakashinkawagun, Toyama 930-1362, Japan
| | - Saneyoshi Ueno
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Asako Matsumoto
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Naoki Tani
- Forestry Division, Japan International Research Center for Agricultural Sciences, Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Hideaki Taira
- Graduate School of Science and Technology, Niigata University, Igarashi 2-nocho, Niigata 950-2101, Japan
| | - Kenji Shinohara
- Department of Molecular and Cell Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Yoshihiko Tsumura
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
21
|
Yang Y, Ishino S, Yamagami T, Kumamaru T, Satoh H, Ishino Y. The OsGEN-L protein from Oryza sativa possesses Holliday junction resolvase activity as well as 5'-flap endonuclease activity. J Biochem 2012; 151:317-27. [DOI: 10.1093/jb/mvr145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Saito M, Yoshida M. Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2268-71. [PMID: 21824678 DOI: 10.1016/j.jplph.2011.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 05/21/2023]
Abstract
A considerable increase in the concentration of raffinose was detected in rice seedlings exposed to chilling for more than 4 days. The content of raffinose in leaf blades increased from hardly detectable levels (0-1 days) to approximately 9 mg/g FW after 11 days of chilling treatment. Accumulation occurred in leaf blades but not in sheaths. Analysis of the expression of candidate genes related to galactinol and raffinose synthesis revealed that transcript levels of two galactinol synthase and four raffinose synthase genes increased in leaf blades before the accumulation of raffinose became detectable.
Collapse
Affiliation(s)
- Masakazu Saito
- NARO Hokkaido Agricultural Research Center, Hitsujigaoka, Sapporo 062-8555, Japan
| | | |
Collapse
|
23
|
Role of RNA interference in plant improvement. Naturwissenschaften 2011; 98:473-92. [PMID: 21503773 DOI: 10.1007/s00114-011-0798-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.
Collapse
|
24
|
Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food Chem Toxicol 2010; 48:1773-90. [DOI: 10.1016/j.fct.2010.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/03/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
|
25
|
Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 2010; 7:185-96. [PMID: 20227662 DOI: 10.1016/j.chom.2010.02.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/14/2010] [Accepted: 02/19/2010] [Indexed: 01/22/2023]
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) represents a critical first step of innate defense in plants and animals. However, maturation and transport of PRRs are not well understood. We find that the rice chitin receptor OsCERK1 interacts with Hsp90 and its cochaperone Hop/Sti1 in the endoplasmic reticulum (ER). Hop/Sti1 and Hsp90 are required for efficient transport of OsCERK1 from the ER to the plasma membrane (PM) via a pathway dependent on Sar1, a small GTPase which regulates ER-to-Golgi trafficking. Further, Hop/Sti1 and Hsp90 are present at the PM in a complex (designated the "defensome") with OsRac1, a plant-specific Rho-type GTPase. Finally, Hop/Sti1 was required for chitin-triggered immunity and resistance to rice blast fungus. Our results suggest that the Hop/Sti1-Hsp90 chaperone complex plays an important and likely conserved role in the maturation and transport of PRRs and may function to link PRRs and Rac/Rop GTPases.
Collapse
Affiliation(s)
- Letian Chen
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K. Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. PLANT & CELL PHYSIOLOGY 2010; 51:585-95. [PMID: 20203239 DOI: 10.1093/pcp/pcq024] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant-specific Rac/Rop small GTPases function as molecular switches for numerous signal transduction events, including defense responses. To understand the function of each of the seven Rac/Rop family members in rice, we studied the tissue-specific expression patterns of Rac/Rop genes by semi-quantitative reverse transcription-PCR (RT-PCR), and also Rac/Rop subcellular localization using green fluorescent protein (GFP) fusion proteins in transient expression systems. We also investigated the roles of these genes in disease resistance by testing single Rac/Rop-RNAi (RNA interference) plants against the rice blast pathogen Magnaporthe grisea. Our studies show that expression of OsRac2, 6 and 7 is very low in leaf blades, and reveal a strong correlation between the number of lysine and/or arginine (KR) residues in the polybasic region of Rac/Rop GTPases and their subcellular distribution in vivo. Infection assays showed that OsRac1 is a positive regulator of blast resistance, confirming previous observations, whereas OsRac4 and OsRac5 are negative regulators of blast resistance. OsRac6 may make minor contributions to disease resistance, while OsRac3 and OsRac7 are probably not involved in defense. Therefore, our study suggests that the rice Rac/Rop family plays multiple roles in diverse cellular activities and has both positive and negative functions in disease resistance.
Collapse
Affiliation(s)
- Letian Chen
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Terao T, Nagata K, Morino K, Hirose T. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:875-93. [PMID: 20151298 DOI: 10.1007/s00122-009-1218-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 11/03/2009] [Indexed: 05/21/2023]
Abstract
The quantitative trait locus controlling the number of primary rachis branches (PRBs) in rice was identified using backcrossed inbred lines of Sasanishiki/Habataki//Sasanishiki///Sasanishiki. The resultant gene was ABERRANT PANICLE ORGANIZATION 1 (APO1). Habataki-genotype segregated reciprocal recombinant lines for the APO1 locus increased both the number of PRB (12-13%) and the number of grains per panicle (9-12%), which increased the grain yield per plant (5-7%). Further recombination dividing this region revealed that different alleles regulated the number of PRB and the number of grains per panicle. The PRB1 allele, which includes the APO1 open reading frame (ORF) and the proximal promoter region, controlled only the number of PRB but not the number of grains per panicle. In contrast, the HI1 allele, which includes only the distal promoter region, increased the grain yield and harvest index in Habataki-genotype plants, nevertheless, the ORF expressed was Sasanishiki type. It also increased the number of large vascular bundles in the peduncle. APO1 expression occurred not only in developing panicles but also in the developing vascular bundle systems. In addition, Habataki plants displayed increased APO1 expression in comparison to Sasanishiki plants. It suggests that APO1 enhances the formation of vascular bundle systems which, consequently, promote carbohydrate translocation to panicles. The HI1 allele is suggested to regulate the amount of APO1 expression, and thereby control the development of vascular bundle systems. These findings may be useful to improve grain yield as well as quality through the improvement of translocation efficiency.
Collapse
Affiliation(s)
- Tomio Terao
- Rice Physiology Research Sub-Team, Hokuriku Research Center, National Agricultural Research Center, National Agriculture and Food Research Organization, 1-2-1, Inada, Joetsu, Niigata, 943-0193, Japan.
| | | | | | | |
Collapse
|
28
|
Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 2009; 136:3443-50. [PMID: 19762423 DOI: 10.1242/dev.040170] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although some genes that encode sensory or regulatory elements for photoperiodic flowering are conserved between the long-day (LD) plant Arabidopsis thaliana and the short-day (SD) plant rice, the gene networks that control rice flowering, and particularly flowering under LD conditions, are not well understood. We show here that RICE FLOWERING LOCUS T 1 (RFT1), the closest homolog to Heading date 3a (Hd3a), is a major floral activator under LD conditions. An RFT1:GFP fusion protein localized in the shoot apical meristem (SAM) under LD conditions, suggesting that RFT1 is a florigen gene in rice. Furthermore, mutants in OsMADS50, a rice ortholog of Arabidopsis SUPPRESOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) did not flower up to 300 days after sowing under LD conditions, indicating that OsMADS50, which acts upstream of RFT1, promotes flowering under LD conditions. We propose that both positive (OsMADS50 and Ehd1) and negative (Hd1, phyB and Ghd7) regulators of RFT1 form a gene network that regulates LD flowering in rice. Among these regulators, Ehd1, a rice-specific floral inducer, integrates multiple pathways to regulate RFT1, leading to flowering under appropriate photoperiod conditions. A rice ortholog of Arabidopsis APETALA1, OsMADS14, was expressed in the floral meristem in wild-type but not in RFT1 RNAi plants, suggesting that OsMADS14 is activated by RFT1 protein in the SAM after the transition to flowering. We have thus exposed a network of genes that regulate LD flowering in rice.
Collapse
Affiliation(s)
- Reina Komiya
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Japan
| | | | | |
Collapse
|
29
|
Characterization and mapping of a new male sterility mutant of anther advanced dehiscence (t) in rice. J Genet Genomics 2009; 35:177-82. [PMID: 18355761 DOI: 10.1016/s1673-8527(08)60024-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 11/23/2022]
Abstract
Anther dehiscence is very important for pollen maturation and release. The mutants of anther dehiscence in rice (Oryza sativa L.) are few, and related research remains poor. A male sterility mutant of anther dehiscence in advance, add(t), has been found in Minghui 63 and its sterility is not sensitive to thermo-photo. To learn the character of sterilization and the function of the add(t) gene, the morphological and cytological studies on the anther and pollen, the ability of the pistil being fertilized, inheritance of the mutant, and mapping of add(t) gene have been conducted. The anther size is normal but the color is white in the mutant against the natural yellow in the wild-type. The pollen is malformed, unstained, and small in the KI-I(2) solution. The anther dehiscence is in advance at the bicellular pollen stage. A crossing test indicated that the grain setting ratio of the add(t) is significantly lower than that of the CMS line 2085A. The ability of the pistil being fertilized is most probably decreased by the add(t) gene. The male sterility is controlled by a single recessive gene of add(t). This gene is mapped between the markers of R02004 (InDel) and RM300 (SSR) on chromosome 2, and the genetic distance from the add(t) gene to these markers is 0.78 cM and 4.66 cM, respectively.
Collapse
|
30
|
Identification of Holliday junction resolvases from humans and yeast. Nature 2008; 456:357-61. [PMID: 19020614 DOI: 10.1038/nature07470] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/26/2008] [Indexed: 11/09/2022]
Abstract
Four-way DNA intermediates, also known as Holliday junctions, are formed during homologous recombination and DNA repair, and their resolution is necessary for proper chromosome segregation. Here we identify nucleases from Saccharomyces cerevisiae and human cells that promote Holliday junction resolution, in a manner analogous to that shown by the Escherichia coli Holliday junction resolvase RuvC. The human Holliday junction resolvase, GEN1, and its yeast orthologue, Yen1, were independently identified using two distinct experimental approaches: GEN1 was identified by mass spectrometry following extensive fractionation of HeLa cell-free extracts, whereas Yen1 was detected by screening a yeast gene fusion library for nucleases capable of Holliday junction resolution. The eukaryotic Holliday junction resolvases represent a new subclass of the Rad2/XPG family of nucleases. Recombinant GEN1 and Yen1 resolve Holliday junctions by the introduction of symmetrically related cuts across the junction point, to produce nicked duplex products in which the nicks can be readily ligated.
Collapse
|
31
|
|
32
|
Miki D, Shimamoto K. De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene-specific and OsMet1-independent in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:539-49. [PMID: 18643988 DOI: 10.1111/j.1365-313x.2008.03624.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Small interfering RNA (siRNA) is an essential factor for epigenetic modification of the genome. Recent studies have suggested that endogenous siRNAs induce DNA methylation, chromatin modification and chromatin inactivation at homologous sequences. We have shown that siRNAs targeted to promoter regions of endogenous rice genes induce strong DNA methylation of the targeted sequences, but transcriptional gene silencing is rarely observed. Here, an analysis of epigenetic modifications induced by RNAi targeted to transcribed regions of endogenous rice genes shows that the effects of siRNA are gene-specific, but that they tend to induce higher de novo DNA methylation of CpG dinucleotides than of other cytosines. However, loss of OsMet1 expression by RNAi did not significantly affect levels and patterns of de novo DNA methylation or post-transcriptional mRNA suppression. We also showed that sequence-specific de novo DNA methylation extended both 5' and 3' of the targeted sequences, but there was no significant extension of siRNA signals either 5' or 3'. These results suggest that exogenous siRNAs are strong inducers of de novo DNA methylation in transcribed sequences of rice endogenous genes, but are insufficient to induce heterochromatin formation.
Collapse
Affiliation(s)
- Daisuke Miki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma 630-0101, Japan
| | | |
Collapse
|
33
|
Suwabe K, Suzuki G, Takahashi H, Shiono K, Endo M, Yano K, Fujita M, Masuko H, Saito H, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Kawagishi-Kobayashi M, Tsutsumi N, Kurata N, Nakazono M, Watanabe M. Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. PLANT & CELL PHYSIOLOGY 2008; 49:1407-16. [PMID: 18755754 PMCID: PMC2566930 DOI: 10.1093/pcp/pcn124] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 08/15/2008] [Indexed: 05/19/2023]
Abstract
In flowering plants, the male gametophyte, the pollen, develops in the anther. Complex patterns of gene expression in both the gametophytic and sporophytic tissues of the anther regulate this process. The gene expression profiles of the microspore/pollen and the sporophytic tapetum are of particular interest. In this study, a microarray technique combined with laser microdissection (44K LM-microarray) was developed and used to characterize separately the transcriptomes of the microspore/pollen and tapetum in rice. Expression profiles of 11 known tapetum specific-genes were consistent with previous reports. Based on their spatial and temporal expression patterns, 140 genes which had been previously defined as anther specific were further classified as male gametophyte specific (71 genes, 51%), tapetum-specific (seven genes, 5%) or expressed in both male gametophyte and tapetum (62 genes, 44%). These results indicate that the 44K LM-microarray is a reliable tool to analyze the gene expression profiles of two important cell types in the anther, the microspore/pollen and tapetum.
Collapse
Affiliation(s)
- Keita Suwabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan
| | - Hirokazu Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Katsuhiro Shiono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Makoto Endo
- Laboratory of Biotechnology, National Institute of Crop Science, Tsukuba, 305-8518 Japan
| | - Kentaro Yano
- Faculty of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiromi Masuko
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Hiroshi Saito
- The 21st Century Center of Excellence Program, Iwate University, Morioka, 020-8550 Japan
| | - Tomoaki Fujioka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Fumi Kaneko
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Tomohiko Kazama
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- The 21st Century Center of Excellence Program, Iwate University, Morioka, 020-8550 Japan
| | - Yoko Mizuta
- Plant Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | | | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Mikio Nakazono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- The 21st Century Center of Excellence Program, Iwate University, Morioka, 020-8550 Japan
- Faculty of Science, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
34
|
Kim NS, Kim TG, Kim OH, Ko EM, Jang YS, Jung ES, Kwon TH, Yang MS. Improvement of recombinant hGM-CSF production by suppression of cysteine proteinase gene expression using RNA interference in a transgenic rice culture. PLANT MOLECULAR BIOLOGY 2008; 68:263-75. [PMID: 18587653 DOI: 10.1007/s11103-008-9367-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/16/2008] [Indexed: 05/20/2023]
Abstract
Recombinant proteins have been previously synthesized in a transgenic rice cell suspension culture system with the rice amylase 3D promoter, which can be induced via sugar starvation. However, the secreted recombinant proteins have been shown to be rapidly decreased as the result of proteolytic degradation occurring during prolonged incubation. The secreted proteases were identified via two-dimensional electrophoresis (2-DE) and ESI/Q-TOF mass spectrometry analyses. The internal amino acid sequences of 8 of 37 spots corresponded to cysteine proteinase (CysP), which is encoded for by Rep1 and EP3A. This result shows that CysP is a major secreted protease in rice cell suspension cultures following induction via sugar starvation. Intron-containing self-complementary hairpin RNA (ihpRNA)-mediated post-transcriptional gene silencing (PTGS) was applied to suppress the expression of CysP in rice cell suspension cultures. The reduction of rice CysP mRNA and the detection of siRNA specific to CysP, an initiator of RNAi, were verified via Northern blot analysis and RNase protection assays, respectively, thereby indicating that PTGS operated successfully in this system. The analysis of total secreted protease and CysP activities evidenced lower activity than was observed with the wild-type. Furthermore, suspension cultures of rice cells transformed with both hGM-CSF and the gene expressing the ihpRNA of CysP evidenced a reduction in total protease and CysP activities, and an up to 1.9-fold improvement in hGM-CSF production as compared to that observed in a rice cell line expressing hGM-CSF only. These results demonstrate the feasibility of the suppression of CysP via RNA interference to reduce protease activity and to increase target protein accumulation in rice cell suspension cultures.
Collapse
Affiliation(s)
- Nan-Sun Kim
- Division of Biological Sciences, Chonbuk National University, Dukjindong 664-14, Jeonju, Chonbuk 561-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development 2008; 135:767-74. [PMID: 18223202 DOI: 10.1242/dev.008631] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RICE FLOWERING LOCUS T 1 (RFT1/FT-L3) is the closest homologue of Heading date 3a (Hd3a), which is thought to encode a mobile flowering signal and promote floral transition under short-day (SD) conditions. RFT1 is located only 11.5 kb from Hd3a on chromosome 6. Although RFT1 RNAi plants flowered normally, double RFT1-Hd3a RNAi plants did not flower up to 300 days after sowing (DAS), indicating that Hd3a and RFT1 are essential for flowering in rice. RFT1 expression was very low in wild-type plants, but there was a marked increase in RFT1 expression by 70 DAS in Hd3a RNAi plants, which flowered 90 DAS. H3K9 acetylation around the transcription initiation site of the RFT1 locus had increased by 70 DAS but not at 35 DAS. In the absence of Hd3a and RFT1 expression, transcription of OsMADS14 and OsMADS15, two rice orthologues of Arabidopsis APETALA1, was strongly reduced, suggesting that they act downstream of Hd3a and RFT1. These results indicate that Hd3a and RFT1 act as floral activators under SD conditions, and that RFT1 expression is partly regulated by chromatin modification.
Collapse
Affiliation(s)
- Reina Komiya
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | | | | | | | | |
Collapse
|
36
|
Woo MO, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH, Piao R, Chin JH, Kim JA, Park BS, Seo HS, Jwa NS, McCouch S, Koh HJ. Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:190-204. [PMID: 18182026 PMCID: PMC2327258 DOI: 10.1111/j.1365-313x.2008.03405.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/04/2007] [Indexed: 05/17/2023]
Abstract
A rice genic male-sterility gene ms-h is recessive and has a pleiotropic effect on the chalky endosperm. After fine mapping, nucleotide sequencing analysis of the ms-h gene revealed a single nucleotide substitution at the 3'-splice junction of the 14th intron of the UDP-glucose pyrophosphorylase 1 (UGPase1; EC2.7.7.9) gene, which causes the expression of two mature transcripts with abnormal sizes caused by the aberrant splicing. An in vitro functional assay showed that both proteins encoded by the two abnormal transcripts have no UGPase activity. The suppression of UGPase by the introduction of a UGPase1-RNAi construct in wild-type plants nearly eliminated seed set because of the male defect, with developmental retardation similar to the ms-h mutant phenotype, whereas overexpression of UGPase1 in ms-h mutant plants restored male fertility and the transformants produced T(1) seeds that segregated into normal and chalky endosperms. In addition, both phenotypes were co-segregated with the UGPase1 transgene in segregating T(1) plants, which demonstrates that UGPase1 has functional roles in both male sterility and the development of a chalky endosperm. Our results suggest that UGPase1 plays a key role in pollen development as well as seed carbohydrate metabolism.
Collapse
Affiliation(s)
- Mi-Ok Woo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | - Tae-Ho Ham
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | - Hyeon-So Ji
- National Institute of Agricultural BiotechnologyRDA, Suwon 441-707, Korea
| | - Min-Seon Choi
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | - Wenzhu Jiang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | - Sang-Ho Chu
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | - Rihua Piao
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | | | - Jung-A Kim
- Department of Molecular Biology, College of Natural Science, Sejong UniversitySeoul 143-747, Korea
| | - Bong Soo Park
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
| | - Nam-Soo Jwa
- Department of Molecular Biology, College of Natural Science, Sejong UniversitySeoul 143-747, Korea
| | - Susan McCouch
- Department of Plant Breeding and Genetics, Cornell UniversityIthaca, NY 14853-1901, USA
| | - Hee-Jong Koh
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul 151-921, Korea
- For correspondence (fax +82 2 873 2056; e-mail )
| |
Collapse
|
37
|
Zuo L, Li S, Chu M, Wang S, Deng Q, Ding L, Zhang J, Wen Y, Zheng A, Li P. Phenotypic characterization, genetic analysis, and molecular mapping of a new mutant gene for male sterility in rice. Genome 2008; 51:303-8. [DOI: 10.1139/g08-009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
xs1 is a male-sterile rice mutant derived from a spontaneous mutation. The floret of the mutant, consisting of 6 stamens and 1 pistil, looks the same as that of the wild type except that the filaments are long and thin and the anthers are withered in white transparence. It is confirmed that xs1 is a no-pollen type of male-sterile mutant, for no pollen grains can be stained with I2–KI solution and the anther locules are always hollow. Anther transverse sections indicate that the mutant microspores are abnormally condensed and agglomerated to form a deeply stained cluster at the late microspore stage, which results in cessation of the vacuolation process of microspores, and, therefore, the mutant forms no functional pollens for reproduction. Genetic analysis of 4 F2 populations and 3 BC1F1 populations revealed that the mutation is controlled by a single recessive gene, termed VR1 (Vacuolation retardation 1). Screening of 432 F2 mutant individuals derived from the cross of xs1 × G603 with simple sequence repeat markers revealed that VR1 is located between the molecular markers RM17411 and RM5030, at distances of 0.7 and 1.5 cM, respectively, on chromosome 4. VR1 is a new male fertility controlling gene located on chromosome 4 in rice.
Collapse
Affiliation(s)
- Ling Zuo
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Shuangcheng Li
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Mingguang Chu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Shiquan Wang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Qiming Deng
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Lei Ding
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Jing Zhang
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Yong Wen
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Aiping Zheng
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
| |
Collapse
|
38
|
Furukawa T, Imamura T, Kitamoto HK, Shimada H. Rice exonuclease-1 homologue, OsEXO1, that interacts with DNA polymerase lambda and RPA subunit proteins, is involved in cell proliferation. PLANT MOLECULAR BIOLOGY 2008; 66:519-531. [PMID: 18231866 DOI: 10.1007/s11103-008-9288-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/31/2007] [Indexed: 05/25/2023]
Abstract
Exonuclease 1, a class III member of the RAD2 nuclease family, is a structure-specific nuclease involved in DNA metabolism (replication, repair and recombination). We have identified a homologue to Exonuclease-1 from rice (Oryza sativa L. cv. Nipponbare) and have designated it O. sativa Exonuclease-1 (OsEXO1). The open reading frame of OsEXO1 encodes a predicted product of 836 amino acid residues with a molecular weight of 92 kDa. Two highly conserved nuclease domains (XPG-N and XPG-I) are present in the N-terminal region of the protein. OsEXO1-sGFP fusion protein transiently overexpressed in the onion epidermal cells localized to the nucleus. The transcript of OsEXO1 is highly expressed in meristematic tissues and panicles. Inhibition of cell proliferation by removal of sucrose from the medium or by the addition of cell cycle inhibitors decreased OsEXO1 expression. Functional complementation assays using yeast RAD2 member null mutants demonstrates that OsEXO1 is able to substitute for ScEXO1 and ScRAD27 functions. Yeast two-hybrid analysis shows that OsEXO1 interacted with rice DNA polymerase lambda (OsPol lambda), the 70 kDa subunit b of rice replication protein A (OsRPA70b), and the 32 kDa subunit 1 of rice replication protein A (OsRPA32-1). Irradiation of UV-B induces OsEXO1 expression while hydrogen peroxide treatment represses it. These results suggest that OsEXO1 plays an important role in both cell proliferation and UV-damaged nuclear DNA repair pathway under dark conditions.
Collapse
Affiliation(s)
- Tomoyuki Furukawa
- Division of Plant Biotechnology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | | | | | | |
Collapse
|
39
|
Kanai Y, Ishikawa G, Takeuchi R, Ruike T, Nakamura RI, Ihara A, Ohashi T, Takata KI, Kimura S, Sakaguchi K. DmGEN shows a flap endonuclease activity, cleaving the blocked-flap structure and model replication fork. FEBS J 2007; 274:3914-27. [PMID: 17614965 DOI: 10.1111/j.1742-4658.2007.05924.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster XPG-like endonuclease (DmGEN) is a new category of nuclease belonging to the RAD2/XPG family. The DmGEN protein has two nuclease domains (N and I domains) similar to XPG/class I nucleases; however, unlike class I nucleases, in DmGEN these two nuclease domains are positioned close to each other as in FEN-1/class II and EXO-1/class III nucleases. To confirm the properties of DmGEN, we characterized the active-site mutant protein (E143A E145A) and found that DmGEN had flap endonuclease activity. DmGEN possessed weak nick-dependent 5'-3' exonuclease activity. Unlike XPG, DmGEN could not incise the bubble structure. Interestingly, based on characterization of flap endonuclease activity, DmGEN preferred the blocked-flap structure as a substrate. This feature is distinctly different from FEN-1. Furthermore, DmGEN cleaved the lagging strand of the model replication fork. Immunostaining revealed that DmGEN was present in the nucleus of actively proliferating Drosophila embryos. Thus, our studies revealed that DmGEN belongs to a new class (class IV) of the RAD2/XPG nuclease family. The biochemical properties of DmGEN and its possible role are also discussed.
Collapse
Affiliation(s)
- Yoshihiro Kanai
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen C, Xiao H, Zhang W, Wang A, Xia Z, Li X, Zhai W, Cheng Z, Zhu L. Adapting rice anther culture to gene transformation and RNA interference. ACTA ACUST UNITED AC 2006; 49:414-28. [PMID: 17172048 DOI: 10.1007/s11427-006-2013-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.
Collapse
Affiliation(s)
- Caiyan Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | |
Collapse
|
42
|
Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice. PLANT PHYSIOLOGY 2005; 138:1903-13. [PMID: 16172097 PMCID: PMC1183382 DOI: 10.1104/pp.105.063933] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA silencing with inverted repeat (IR) constructs has been used to suppress gene expression in various organisms. However, the transitive RNA-silencing effect described in plants may preclude the use of RNA silencing for a gene family. Here, we show that, in rice (Oryza sativa), transitive RNA silencing (spreading of double-stranded RNA along the target mRNA) occurred with the green fluorescent protein transgene but not with the endogenous phytoene desaturase gene. We fused IR copies of unique 3' untranslated regions derived from the rice OsRac gene family to a strong promoter and stably introduced them into rice. Each of the seven members of the OsRac gene family was specifically suppressed by its respective IR construct. We also examined IR constructs in which multiple 3' untranslated regions were fused and showed that three members of the OsRac gene family were effectively suppressed by a single construct. Using highly conserved regions of the two members of the OsRac gene family, we also suppressed the expression of all members of the gene family with variable efficiencies. These results suggest that RNA silencing is a useful method for the functional analysis of gene families in rice and other plants.
Collapse
Affiliation(s)
- Daisuke Miki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | | | | |
Collapse
|