1
|
Liu HW, Urzica EI, Gallaher SD, Schmollinger S, Blaby-Haas CE, Iwai M, Merchant SS. Chlamydomonas cells transition through distinct Fe nutrition stages within 48 h of transfer to Fe-free medium. PHOTOSYNTHESIS RESEARCH 2024; 161:213-232. [PMID: 39017982 DOI: 10.1007/s11120-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 07/18/2024]
Abstract
Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short and long-term adjustments. While slower growth, chlorosis and lower photosynthetic parameters are evident only after one or more days in Fe-free medium, the abundance of some transcripts, such as those for genes encoding transporters and enzymes involved in Fe assimilation, change within minutes, before changes in intracellular Fe content are noticeable, suggestive of a sensitive mechanism for sensing Fe. Promoter reporter constructs indicate a transcriptional component to this immediate primary response. With acetate provided as a source of reduced carbon, transcripts encoding respiratory components are maintained relative to transcripts encoding components of photosynthesis and tetrapyrrole biosynthesis, indicating metabolic prioritization of respiration over photosynthesis. In contrast to the loss of chlorophyll, carotenoid content is maintained under Fe limitation despite a decrease in the transcripts for carotenoid biosynthesis genes, indicating carotenoid stability. These changes occur more slowly, only after the intracellular Fe quota responds, indicating a phased response in Chlamydomonas, involving both primary and secondary responses during acclimation to poor Fe nutrition.
Collapse
Affiliation(s)
- Helen W Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA
| | - Eugen I Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Competence Network IBD, Hopfenstrasse 60, 24103, Kiel, Germany
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Arend M, Yuan Y, Ruiz-Sola MÁ, Omranian N, Nikoloski Z, Petroutsos D. Widening the landscape of transcriptional regulation of green algal photoprotection. Nat Commun 2023; 14:2687. [PMID: 37164999 PMCID: PMC10172295 DOI: 10.1038/s41467-023-38183-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
Availability of light and CO2, substrates of microalgae photosynthesis, is frequently far from optimal. Microalgae activate photoprotection under strong light, to prevent oxidative damage, and the CO2 Concentrating Mechanism (CCM) under low CO2, to raise intracellular CO2 levels. The two processes are interconnected; yet, the underlying transcriptional regulators remain largely unknown. Employing a large transcriptomic data compendium of Chlamydomonas reinhardtii's responses to different light and carbon supply, we reconstruct a consensus genome-scale gene regulatory network from complementary inference approaches and use it to elucidate transcriptional regulators of photoprotection. We show that the CCM regulator LCR1 also controls photoprotection, and that QER7, a Squamosa Binding Protein, suppresses photoprotection- and CCM-gene expression under the control of the blue light photoreceptor Phototropin. By demonstrating the existence of regulatory hubs that channel light- and CO2-mediated signals into a common response, our study provides an accessible resource to dissect gene expression regulation in this microalga.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Yizhong Yuan
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - M Águila Ruiz-Sola
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, 41092, Sevilla, Spain
| | - Nooshin Omranian
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Dimitris Petroutsos
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France.
| |
Collapse
|
3
|
Águila Ruiz-Sola M, Flori S, Yuan Y, Villain G, Sanz-Luque E, Redekop P, Tokutsu R, Küken A, Tsichla A, Kepesidis G, Allorent G, Arend M, Iacono F, Finazzi G, Hippler M, Nikoloski Z, Minagawa J, Grossman AR, Petroutsos D. Light-independent regulation of algal photoprotection by CO 2 availability. Nat Commun 2023; 14:1977. [PMID: 37031262 PMCID: PMC10082802 DOI: 10.1038/s41467-023-37800-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.
Collapse
Affiliation(s)
- M Águila Ruiz-Sola
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - Serena Flori
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Yizhong Yuan
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Gaelle Villain
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Emanuel Sanz-Luque
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- University of Cordoba, Department of Biochemistry and Molecular Biology, Cordoba, Spain
| | - Petra Redekop
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Ryutaro Tokutsu
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Anika Küken
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Angeliki Tsichla
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Georgios Kepesidis
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Guillaume Allorent
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Fabrizio Iacono
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Giovanni Finazzi
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universität, 48143, Münster, Germany
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Jun Minagawa
- Division of Environmental photobiology, National Institute for Basic Biology (NIBB), Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Arthur R Grossman
- The Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | |
Collapse
|
4
|
Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 2020. [DOI: 10.1007/s12038-020-00080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Chetouhi C, Masseret E, Satta CT, Balliau T, Laabir M, Jean N. Intraspecific variability in membrane proteome, cell growth, and morphometry of the invasive marine neurotoxic dinoflagellate Alexandrium pacificum grown in metal-contaminated conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136834. [PMID: 32014766 DOI: 10.1016/j.scitotenv.2020.136834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/03/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Over the past decades, the occurrence, distribution and intensity of harmful algal blooms involving the dinoflagellate Alexandrium pacificum have increased in marine coastal areas disturbed by anthropogenic inputs. This invasive species produces saxitoxin, which causes the paralytic shellfish poisoning syndrome in humans upon consumption of contaminated seafood. Blooms of A. pacificum have been reported in metal-contaminated coastal ecosystems, suggesting some ability of these microorganisms to adapt to and/or resist in metal stress conditions. This study seeks to characterize the modifications in membrane proteomes (by 2-D electrophoresis coupled to LC-MS/MS), cell growth and morphometry (measured with an inverted microscope), in response to metal stress (addition of Zn2+, Pb2+, Cu2+ and Cd2+), in two Mediterranean A. pacificum strains: SG C10-3 and TAR C5-4F, respectively isolated from the Santa Giusta Lagoon (Sardinia, Italy) and from the Tarragona seaport (Spain), both metal-contaminated ecosystems. In the SG C10-3 cultures grown in a metal cocktail, cell growth was significantly delayed, and cell size increased (22% of 37.5 μm cells after 25 days of growth). Conversely, no substantial change was observed for cell growth or cell size in the TAR C5-4F cultures grown in a metal cocktail (P > 0.10), thus indicating intraspecific variability in the responses of A. pacificum strains to metal contamination. Regardless of the conditions tested, the total number of proteins constituting the membrane proteome was significantly higher for TAR C5-4F than for SG C10-3, which may help TAR C5-4F to thrive better in contaminated conditions. For both strains, the total number of proteins constituting the membrane proteomes was significantly lower in response to metal stress (29% decrease in the SG C10-3 proteome: 82 ± 12 proteins for controls, and 58 ± 12 in metal-contaminated cultures; 17% decrease in the TAR C5-4F proteome: 101 ± 8 proteins for controls, and 84 ± 5 in metal-contaminated cultures). Moreover, regardless of the strain, proteins with significantly modified expression in response to stress were mainly down-regulated (representing 45% of the proteome for SG C10-3 and 38% for TAR C5-4F), clearly showing the harmful effects of the metals. Protein down-regulation may affect cell transport (actin and phospholipid scramblase in SG C10-3), photosynthesis (RUBISCO in SG C10-3, light-harvesting protein in TAR C5-4F, and high-CO2-inducing periplasmic protein in both strains), and finally energy metabolism (ATP synthase in both strains). However, other modifications in protein expression may confer to these A. pacificum strains a capacity for adaptation and/or resistance to metal stress conditions, for example by (i) limiting the metal entry through the plasma membrane of the SG C10-3 cells (via the down-regulation of scramblase) and/or (ii) reducing the oxidative stress generated by metals in SG C10-3 and TAR C5-4F cells (due to down-regulation of ATP-synthase).
Collapse
Affiliation(s)
- Cherif Chetouhi
- Mediterranean Institute of Oceanography, Equipe Microbiologie Environnementale et Biotechnologie, UM 110 CNRS/IRD Aix-Marseille Université, Université de Toulon, CS 60584, 83 041 Toulon Cedex 9, France
| | - Estelle Masseret
- Marbec, University of Montpellier, IRD, Ifremer, CNRS, 34 095 Montpellier Cedex 5, France
| | - Cecilia Teodora Satta
- University of Sassari, via Piandanna 4, Agenzia Regionale per la Ricerca in Agricoltura, Loc. Bonassai, Olmedo, 07 100 Sassari, Italy
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190 Gif-sur-Yvette, France
| | - Mohamed Laabir
- Marbec, University of Montpellier, IRD, Ifremer, CNRS, 34 095 Montpellier Cedex 5, France
| | - Natacha Jean
- Mediterranean Institute of Oceanography, Equipe Microbiologie Environnementale et Biotechnologie, UM 110 CNRS/IRD Aix-Marseille Université, Université de Toulon, CS 60584, 83 041 Toulon Cedex 9, France.
| |
Collapse
|
6
|
Barjona do Nascimento Coutinho P, Friedl C, Heilmann M, Buchholz R, Stute SC. Validated Nuclear-Based Transgene Expression Regulated by the Fea1 Iron-Responsive Promoter in the Green Alga Chlamydomonas reinhardtii. Mol Biotechnol 2019; 61:305-316. [DOI: 10.1007/s12033-018-00148-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Ishinishi R, Matsuura H, Tanaka S, Nozawa S, Tanada K, Kawashita N, Fujiyama K, Miyasaka H, Hirata K. Isolation and characterization of a stress-responsive gene encoding a CHRD domain-containing protein from a halotolerant green alga. Gene 2018; 640:14-20. [PMID: 29017964 DOI: 10.1016/j.gene.2017.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/12/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022]
Abstract
The genetic basis of stress resistance in extremophilic microalgae is not well studied. In this study, a gene of unknown function, the cluster58 or CL58 gene, was identified from the halotolerant green alga Chlamydomonas W80 and characterized. The CL58 gene encodes a protein containing a domain of unknown function, the CHRD domain, and a putative secretory signaling sequence at its N-terminus. The levels of CL58 mRNA increased in response to high copper levels and low temperatures. When the CL58 gene was heterologously expressed as a fusion gene with the NanoLuc luciferase gene in Chlamydomonas reinhardtii, a majority of the NanoLuc activity was detected in the culture medium compared with that in the intracellular fraction. A mutagenic analysis revealed that the putative secretory signaling sequence was sufficient for the secretion of the CL58-NanoLuc fusion protein. In addition, we expressed the protein encoded by the CL58 gene in Escherichia coli; the recombinant, soluble protein was then purified. In summary, we identified a novel gene from C. W80 that appears to encode a stress-responsive, CHRD domain-containing secreted protein.
Collapse
Affiliation(s)
- Ryo Ishinishi
- Applied Environmental Biology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideyuki Matsuura
- Applied Environmental Biology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Satoshi Tanaka
- The Kansai Electric Power Co., Inc., Advanced Technology Laboratory, Keihanna Engineering Center, 1-7 Seika-cho, Souraku-gun, Kyoto 619-0237, Japan
| | - Saaya Nozawa
- Applied Environmental Biology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Tanada
- Applied Environmental Biology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norihito Kawashita
- Pharmainformatics and Pharmacometrics Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto 860-0082, Japan
| | - Kazumasa Hirata
- Applied Environmental Biology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
9
|
Yoshimura K, Kosugi C, Imura Y, Kato T, Suzuki M, Yoshimura E. Sample Preparation of the Macro Alga Pyropia yezoensisfor the Determination of Messenger RNA. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1157806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 2016; 34:1225-1244. [DOI: 10.1016/j.biotechadv.2016.08.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/01/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023]
|
11
|
Choi HI, Kim JYH, Kwak HS, Sung YJ, Sim SJ. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. BIOMICROFLUIDICS 2016; 10:014121. [PMID: 26958101 PMCID: PMC4769253 DOI: 10.1063/1.4942756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/12/2016] [Indexed: 05/24/2023]
Abstract
There is a growing interest in the photosynthetic carbon fixation by microalgae for the production of valuable products from carbon dioxide (CO2). Microalgae are capable of transporting bicarbonate (HCO3 (-)), the most abundant form of inorganic carbon species in the water, as a source of CO2 for photosynthesis. Despite the importance of HCO3 (-) as the carbon source, little is known about the chemotactic response of microalgae to HCO3 (-). Here, we showed the chemotaxis of a model alga, Chlamydomonas reinhardtii, towards HCO3 (-) using an agarose gel-based microfluidic device with a flow-free and stable chemical gradient during the entire assay period. The device was validated by analyzing the chemotactic responses of C. reinhardtii to the previously known chemoattractants (NH4Cl and CoCl2) and chemotactically neutral molecule (NaCl). We found that C. reinhardtii exhibited the strongest chemotactic response to bicarbonate at the concentration of 26 mM in a microfluidic device. The chemotactic response to bicarbonate showed a circadian rhythm with a peak during the dark period and a valley during the light period. We also observed the changes in the chemotaxis to bicarbonate by an inhibitor of bicarbonate transporters and a mutation in CIA5, a transcriptional regulator of carbon concentrating mechanism, indicating the relationship between chemotaxis to bicarbonate and inorganic carbon metabolism in C. reinhardtii. To the best of our knowledge, this is the first report of the chemotaxis of C. reinhardtii towards HCO3 (-), which contributes to the understanding of the physiological role of the chemotaxis to bicarbonate and its relevance to inorganic carbon utilization.
Collapse
Affiliation(s)
- Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Jaoon Young Hwan Kim
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Ho Seok Kwak
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | | |
Collapse
|
12
|
Wang Y, Stessman DJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:429-448. [PMID: 25765072 DOI: 10.1111/tpj.12829] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 05/04/2023]
Abstract
The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Nakano S, Chang KH, Shijima A, Miyamoto H, Sato Y, Noto Y, Ha JY, Sakamoto M. A usage of CO2 hydrate: convenient method to increase CO2 concentration in culturing algae. BIORESOURCE TECHNOLOGY 2014; 172:444-448. [PMID: 25263943 DOI: 10.1016/j.biortech.2014.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
The addition of CO2 to algal culture systems can increase algal biomass effectively. Generally, gas bubbling is used to increase CO2 levels in culture systems; however, it is difficult to quantitatively operate to control the concentration using this method. In this study, we tested the usability of CO2 hydrate for phytoplankton culture. Specifically, green algae Pseudokirchneriella subcapitata were cultured in COMBO medium that contained dissolved CO2 hydrate, after which its effects were evaluated. The experiment was conducted according to a general bioassay procedure (OECD TG201). CO2 promoted algae growth effectively (about 2-fold relative to the control), and the decrease in pH due to dissolution of the CO2 in water recovered soon because of photosynthesis. Since the CO2 hydrate method can control a CO2 concentration easily and quantitatively, it is expected to be useful in future applications.
Collapse
Affiliation(s)
- Sho Nakano
- Department of Applied Environmental Science, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Kwang-Hyeon Chang
- Department of Applied Environmental Science, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Atsushi Shijima
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Hiroyuki Miyamoto
- Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Yukio Sato
- Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Yuji Noto
- Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Jin-Yong Ha
- Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan
| | - Masaki Sakamoto
- Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan.
| |
Collapse
|
14
|
Chen M, Li J, Zhang L, Chang S, Liu C, Wang J, Li S. Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria. Sci Rep 2014; 4:3998. [PMID: 24499777 PMCID: PMC3915303 DOI: 10.1038/srep03998] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Utilizing cyanobacteria as a bioenergy resource is difficult due to the cost and energy consuming harvests of microalgal biomass. In this study, an auto-floating system was developed by increasing the photobiological H2 production in the heterocysts of filamentous cyanobacteria. An amount of 1.0 μM of diuron, which inhibited O2 production in cyanobacteria, resulted in a high rate of H2 production in heterocysts. The auto-floating process recovered 91.71% ± 1.22 of the accumulated microalgal biomass from the liquid media. Quantification analysis revealed that 0.72–1.10 μmol H2 per mg dry weight microalgal biomass was necessary to create this auto-floating system. Further bio-conversion by using anaerobic digestion converted the harvested microalgal biomass into biogas. Through this novel coupled system of photobiological H2 production and anaerobic digestion, a high level of light energy conversion efficiency from solar energy to bioenergy was attained with the values of 3.79% ± 0.76.
Collapse
Affiliation(s)
- Ming Chen
- 1] Institute of New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing100084, China [2] Beijing Engineering Research Center for Biofuels, Tsinghua University, Tsinghua Garden, Beijing 100084, China
| | - Jihong Li
- 1] Institute of New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing100084, China [2] Beijing Engineering Research Center for Biofuels, Tsinghua University, Tsinghua Garden, Beijing 100084, China
| | - Lei Zhang
- 1] Institute of New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing100084, China [2] Beijing Engineering Research Center for Biofuels, Tsinghua University, Tsinghua Garden, Beijing 100084, China
| | - Sandra Chang
- 1] Institute of New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing100084, China [2] Beijing Engineering Research Center for Biofuels, Tsinghua University, Tsinghua Garden, Beijing 100084, China
| | - Chen Liu
- Institute of New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing100084, China
| | - Jianlong Wang
- Institute of New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing100084, China
| | - Shizhong Li
- 1] Institute of New Energy Technology, Tsinghua University, Tsinghua Garden, Beijing100084, China [2] Beijing Engineering Research Center for Biofuels, Tsinghua University, Tsinghua Garden, Beijing 100084, China
| |
Collapse
|
15
|
Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S, Le Mauff F, Teo G, Hochmal AK, Blanco-Rivero A, Loutelier-Bourhis C, Kiefer-Meyer MC, Fufezan C, Burel C, Lerouge P, Martinez F, Bardor M, Hippler M. Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol Cell Proteomics 2013; 12:3160-83. [PMID: 23912651 PMCID: PMC3820931 DOI: 10.1074/mcp.m113.028191] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/01/2013] [Indexed: 01/13/2023] Open
Abstract
Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of (18)O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Martin Scholz
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carolina Arias
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Flavien Dardelle
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Stefan Schulze
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - François Le Mauff
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Gavin Teo
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Ana Karina Hochmal
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Amaya Blanco-Rivero
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Corinne Loutelier-Bourhis
- §§Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, INSA de Rouen, 1 Rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Marie-Christine Kiefer-Meyer
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Christian Fufezan
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carole Burel
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Patrice Lerouge
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Flor Martinez
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Muriel Bardor
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Michael Hippler
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| |
Collapse
|
16
|
Baba M, Hanawa Y, Suzuki I, Shiraiwa Y. Regulation of the expression of H43/Fea1 by multi-signals. PHOTOSYNTHESIS RESEARCH 2011; 109:169-177. [PMID: 21243526 DOI: 10.1007/s11120-010-9619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
The composition of extracellular proteins is known to be drastically changed in the unicellular green alga Chlamydomonas reinhardtii when the cells are transferred from ambient CO(2) to elevated CO(2) conditions. We previously observed very high production of the H43/Fea1 protein under high-CO(2) (0.3-3% in air) conditions. In addition, H43/Fea1 gene expression was reported to be induced under iron-deficient and cadmium-excess conditions, but it remains unclear how gene expression is regulated by multiple signals. To elucidate the regulatory mechanism of H43/Fea1 expression, this study intended to identify a high-CO(2)-responsive cis-element in a wall-deficient strain C. reinhardtti CC-400. Cells incubated in the presence of acetate in the dark, namely heterotrophically generated high-CO(2) conditions, were used for inducing H43/Fea1 gene expression following our previous study (Hanawa et al., Plant Cell Physiol 48:299-309, 2007) in Fe-sufficient and Cd-deficient medium to prevent the generation of other signals. First, we constructed a reporter assay system using transformants constructed by introducing genes with series of 5'-deleted upstream sequences of H43/Fea1 that were fused to a coding sequence of the Ars for arylsulfatase2 reporter gene. Consequently, the high-CO(2)-responsive cis-element (HCRE) was found to be located at a -537/-370 upstream region from the transcriptional initiation site of H43/Fea1. However, it still remains possible that a -724/-537 upstream region may also have a significant role in activating gene expression regulated by high-CO(2). Remarkably, a -925/-370 upstream region could successfully activate the Ars reporter gene under heterotrophically generated high-CO(2) conditions even when the sequence containing two Fe-deficiency-responsive elements was completely deleted. These results clearly showed that H43/Fea1 expression is regulated by high-CO(2) signal independently via the HCRE that is located distantly from Fe-deficient-signal responsive element, indicating that H43/Fea1 is a multi-signal-regulated gene.
Collapse
Affiliation(s)
- Masato Baba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
| | | | | | | |
Collapse
|
17
|
Hanada Y, Sugioka K, Shihira-Ishikawa I, Kawano H, Miyawaki A, Midorikawa K. 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. LAB ON A CHIP 2011; 11:2109-15. [PMID: 21562650 DOI: 10.1039/c1lc20101h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Phormidium, a genus of filamentous cyanobacteria, forms endosymbiotic associations with seedling roots that accelerate the growth of the vegetable seedlings. Understanding the gliding mechanism of Phormidium will facilitate improved formation of this association and increased vegetable production. To observe the gliding movements, we fabricated various microfluidic chips termed nanoaquariums using a femtosecond (fs) laser. Direct fs laser writing, followed by annealing and successive wet etching in dilute hydrofluoric acid solution, can easily produce three-dimensional (3D) microfluidics with different structures embedded in a photostructurable glass. Using the fs laser, optical waveguides and filters were integrated with the microfluidic structures in the microchips, allowing the gliding mechanism to be more easily clarified. Using this apparatus, we found that CO(2) secreted from the seedling root attracts Phormidium in the presence of light, and determined the light intensity and specific wavelength necessary for gliding.
Collapse
Affiliation(s)
- Yasutaka Hanada
- RIKEN-Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Baba M, Suzuki I, Shiraiwa Y. Proteomic Analysis of High-CO2-Inducible Extracellular Proteins in the Unicellular Green Alga, Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2011; 52:1302-14. [DOI: 10.1093/pcp/pcr078] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Long JC, Merchant SS. Photo-oxidative Stress Impacts the Expression of Genes Encoding Iron Metabolism Components in Chlamydomonas†. Photochem Photobiol 2008; 84:1395-403. [DOI: 10.1111/j.1751-1097.2008.00451.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Fei X, Deng X. A novel Fe deficiency-responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinharditii. PLANT & CELL PHYSIOLOGY 2007; 48:1496-503. [PMID: 17711875 DOI: 10.1093/pcp/pcm110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated the promoter region of atx1, which encodes a copper chaperone in response to iron deficiency induction. Deletion analysis of the promoter region from the 5' and 3' ends revealed that the -532/-461 and -320/-276 regions were necessary and sufficient for iron deficiency-inducible expression. Further deletion analysis showed that two of the Fe deficiency-responsive elements (FeREs) localized within the -532/-511 and -306/-276 regions, in which AtxFeRE1 at -529/-515 (GTCGCACTGGCATGT) and AtxFeRE2 at -300/-286 (GCAGCGATGGCATTT) had been identified, respectively, with a conserved sequence of GNNGCNNTGGCATNT, differing from all known FeREs found in other organisms.
Collapse
Affiliation(s)
- Xiaowen Fei
- State Key laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Agricultural Academy for Tropical Crops, Haikou 571101, PR China
| | | |
Collapse
|
21
|
Allen MD, del Campo JA, Kropat J, Merchant SS. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii. EUKARYOTIC CELL 2007; 6:1841-52. [PMID: 17660359 PMCID: PMC2043389 DOI: 10.1128/ec.00205-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previously, we had identified FOX1 and FTR1 as iron deficiency-inducible components of a high-affinity copper-dependent iron uptake pathway in Chlamydomonas. In this work, we survey the version 3.0 draft genome to identify a ferrireductase, FRE1, and two ZIP family proteins, IRT1 and IRT2, as candidate ferrous transporters based on their increased expression in iron-deficient versus iron-replete cells. In a parallel proteomic approach, we identified FEA1 and FEA2 as the major proteins secreted by iron-deficient Chlamydomonas reinhardtii. The recovery of FEA1 and FEA2 from the medium of Chlamydomonas strain CC425 cultures is strictly correlated with iron nutrition status, and the accumulation of the corresponding mRNAs parallels that of the Chlamydomonas FOX1 and FTR1 mRNAs, although the magnitude of regulation is more dramatic for the FEA genes. Like the FOX1 and FTR1 genes, the FEA genes do not respond to copper, zinc, or manganese deficiency. The 5' flanking untranscribed sequences from the FEA1, FTR1, and FOX1 genes confer iron deficiency-dependent expression of ARS2, suggesting that the iron assimilation pathway is under transcriptional control by iron nutrition. Genetic analysis suggests that the secreted proteins FEA1 and FEA2 facilitate high-affinity iron uptake, perhaps by concentrating iron in the vicinity of the cell. Homologues of FEA1 and FRE1 were identified previously as high-CO(2)-responsive genes, HCR1 and HCR2, in Chlorococcum littorale, suggesting that components of the iron assimilation pathway are responsive to carbon nutrition. These iron response components are placed in a proposed iron assimilation pathway for Chlamydomonas.
Collapse
Affiliation(s)
- Michael D Allen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|