1
|
Codon optimization of the synthetic 3-ketosphinganine reductase (3KSR) protein for enhancing sphingolipid biosynthetic enzyme expression. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Dissection of a rice OsMac1 mRNA 5' UTR to uncover regulatory elements that are responsible for its efficient translation. PLoS One 2021; 16:e0253488. [PMID: 34242244 PMCID: PMC8270207 DOI: 10.1371/journal.pone.0253488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
The untranslated regions (UTRs) of mRNAs are involved in many posttranscriptional regulatory pathways. The rice OsMac1 mRNA has three splicing variants of the 5' UTR (UTRa, UTRb, and UTRc), which include a CU-rich region and three upstream open reading frames (uORFs). UTRc contains an additional 38-nt sequence, termed sp38, which acts as a strong translational enhancer of the downstream ORF; reporter analysis revealed translational efficiencies >15-fold higher with UTRc than with the other splice variants. Mutation analysis of UTRc demonstrated that an optimal sequence length of sp38, rather than its nucleotide sequence is essential for UTRc to promote efficient translation. In addition, the 5' 100 nucleotides of CU-rich region contribute to UTRc translational enhancement. Strikingly, three uORFs did not reveal their inhibitory potential within the full-length leader, whereas deletion of the 5' leader fragment preceding the leader region with uORFs nearly abolished translation. Computational prediction of UTRc structural motifs revealed stem-loop structures, termed SL1-SL4, and two regions, A and B, involved in putative intramolecular interactions. Our data suggest that SL4 binding to Region-A and base pairing between Region-B and the UTRc 3'end are critically required for translational enhancement. Since UTRc is not capable of internal initiation, we presume that the three-dimensional leader structures can allow translation of the leader downstream ORF, likely allowing the bypass of uORFs.
Collapse
|
3
|
Teramura H, Yamada K, Ito K, Kasahara K, Kikuchi T, Kioka N, Fukuda M, Kusano H, Tanaka K, Shimada H. Characterization of novel SUMO family genes in the rice genome. Genes Genet Syst 2021; 96:25-32. [PMID: 33731501 DOI: 10.1266/ggs.20-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) is a post-translational modification factor composed of about 100 amino acid residues. Most plant species express a family of SUMO isoforms. We found three novel homologs of rice (Oryza sativa L.) SUMO genes, OsSUMO4, OsSUMO5 and OsSUMO6, in addition to the known SUMO genes OsSUMO1-OsSUMO3. Phylogenetic tree analysis revealed that rice SUMO genes have diverged considerably during their evolution. All six of these SUMO genes complemented the phenotype of the SUMO-deficient pmt3Δ mutant of fission yeast. Among the amino acid sequences of rice SUMO proteins, consensus motifs (ΨKXE/D) of the SUMO acceptor site were found in OsSUMO3, OsSUMO4, OsSUMO5 and OsSUMO6. The heat shock protein HSF7 is known to be SUMOylated in Arabidopsis thaliana. SUMOylation using a bacterial expression system revealed that the rice HSF7 homolog was modified by the six rice SUMOs, and further suggested that OsSUMO1, OsSUMO3, OsSUMO4 and OsSUMO6 are involved in its multiple SUMOylation.
Collapse
Affiliation(s)
- Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science
| | - Kazuma Yamada
- Department of Biological Science and Technology, Tokyo University of Science
| | - Kahori Ito
- Department of Biological Science and Technology, Tokyo University of Science
| | - Keisuke Kasahara
- Department of Biological Science and Technology, Tokyo University of Science
| | - Tsubasa Kikuchi
- Department of Biological Science and Technology, Tokyo University of Science
| | - Naoya Kioka
- Department of Biological Science and Technology, Tokyo University of Science
| | - Masato Fukuda
- Department of Biological Science and Technology, Tokyo University of Science
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science
| | - Katsunori Tanaka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science
| |
Collapse
|
4
|
Abstract
Long chain base (LCB) is a unique building block found in sphingolipids. The initial step of LCB biosynthesis stems from serine:palmitoyl-CoA transferase enzyme, producing 3-ketodihydrosphingosine with multiple regulatory proteins including small subunit SPT a/b and orosomucoid-like protein1-3. 3-Ketodihydrosphingosine reductase and sphingolipid Δ4-desaturase, both of them poorly characterized mammalian enzymes, play key roles for neurological homeostasis based on their pathogenic mutation in humans. Ceramide synthase in mammals has six isoforms with distinct phenotype in each knockout mouse. In plants and fungi, sphingolipids also contain phytosphingosine due to sphingolipid C4-hydroxylase. In contrast to previous notion that dietary intake might be its major route in animals, emerging evidences suggested that phytosphingosine biosynthesis does occur in some tissues such as the skin by mammalian C4-hydroxylase activity of the DEGS2 gene. This short review summarizes LCB biosynthesis with their associating metabolic pathways in animals, plants and fungi. Sphingolipid is a group of lipids that contains a unique building block known as long chain base (LCB). LCB is susceptible to various biosynthetic reactions such as unsaturation, hydroxylation and methylation. A failure of these enzymatic reactions leads to the pathogenesis in humans with an elevation of LCB-derived specific biomarkers. Herein, we summarized emerging evidences in mammalian LCB biosynthesis in sphingolipids. Some unique metabolic pathways in plants and fungi were also discussed.
Collapse
|
5
|
Ji H, Han CD, Lee GS, Jung KH, Kang DY, Oh J, Oh H, Cheon KS, Kim SL, Choi I, Baek J, Kim KH. Mutations in the microRNA172 binding site of SUPERNUMERARY BRACT (SNB) suppress internode elongation in rice. RICE (NEW YORK, N.Y.) 2019; 12:62. [PMID: 31399805 PMCID: PMC6689044 DOI: 10.1186/s12284-019-0324-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 08/05/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Internode elongation is an important agronomic trait in rice that determines culm length, which is related to lodging, panicle exsertion, and biomass. sui4 (shortened uppermost internode 4) mutants show reduced internode length and a dwarf phenotype due to shortened internodes; the uppermost internode is particularly severely affected. The present study was performed to identify the molecular nature and function of the SUI4 gene during internode elongation. RESULTS Our previous study showed that the SUI4 gene was mapped to a 1.1-Mb interval on chromosome 7 (Ji et al. 2014). In order to isolate the gene responsible for the sui4 phenotype, genomic DNA resequencing of sui4 mutants and wild-type plants and reciprocal transformation of wild-type and mutant alleles of the putative SUI4 gene was performed. The data revealed that the causative mutation of sui4 was a T to A nucleotide substitution at the microRNA172 binding site of Os07g0235800, and that SUI4 is a new allele of the previously reported gene SUPERNUMERARY BRACT (SNB), which affects flower structure. In order to understand the effect of this mutation on expression of the SUI4/SNB gene, SUI4/SNB native promoter-fuzed GUS transgenics were examined, along with qRT-PCR analysis at various developmental stages. In sui4 mutants, the SUI4/SNB gene was upregulated in the leaves, culms, and panicles, especially when internodes were elongated. In culms, SUI4/SNB was expressed in the nodes and the lower parts of elongating internodes. In order to further explore the molecular nature of SUI4/SNB during internode elongation, RNA-seq and qRT-PCR analysis were performed with RNAs from the culms of sui4 mutants and wild-type plants in the booting stage. The data showed that in sui4 mutants, genes deactivating bioactive gibberellins and cytokinin were upregulated while genes related to cell expansion and cell wall synthesis were downregulated. CONCLUSION In summary, this paper shows that interaction between SUI4/SNB and microRNA172 could determine internode elongation during the reproductive stage in rice plants. Due to a mutation at the microRNA172 binding site in sui4 mutants, the expression of SUI4/SNB was enhanced, which lowered the activities of cell expansion and cell wall synthesis and consequently resulted in shortened internodes.
Collapse
Affiliation(s)
- Hyeonso Ji
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea.
| | - Chang-Deok Han
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 52828, South Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Ki-Hong Jung
- The Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Do-Yu Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Jun Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Hyoja Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Kyeong-Seong Cheon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Song Lim Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Inchan Choi
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| | - Kyung-Hwan Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Jeonju, 54874, South Korea
| |
Collapse
|
6
|
Teramura H, Kondo K, Suzuki M, Kobayashi H, Furukawa T, Kusano H, Shimada H. Aberrant endosperm formation caused by reduced production of major allergen proteins in a rice flo2 mutant that confers low-protein accumulation in grains. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:85-90. [PMID: 31768108 PMCID: PMC6847783 DOI: 10.5511/plantbiotechnology.19.0312a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 06/10/2023]
Abstract
Rice flo2 mutation produces grains showing a reduced amount of storage proteins. Using Nipponbare and the flo2 mutant, we created rice transformants that showed defective production of major allergen proteins RA14 and RA33 (14-16 kDa and 33 kDa allergen proteins, respectively) by RNAi introduction. The knock-down transformant generated using Nipponbare showed greatly reduced accumulation of both allergen proteins, normal growth, and production of a sufficient amount of normal-shaped seeds. F1 seeds were obtained by crossing between the transformants containing RNAi genes to RA14 and RA33, and showed decreased accumulation of both proteins. However, a peculiar phenotype was observed in the flo2 transformants that lacked accumulation of RA14 or RA33. They showed significantly reduced fertility. A wrinkled grain feature was found on the transformant lacking accumulation of RA14. F1 seeds obtained by crossing these transformants showed significantly lower fertility. F2 seeds showed decreases in both allergen proteins but morphological abnormality with small and severely wrinkled features. These results indicated that it is hard to obtain any transformant lacking accumulation of these allergen proteins using the flo2 mutant, whereas a knock-down transformant of both allergen protein genes was obtained when a wild-type Nipponbare was used as a host. These facts strongly suggest that RA14 and RA33 have some roles in rice seeds.
Collapse
Affiliation(s)
- Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Kyoko Kondo
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Masato Suzuki
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Kobayashi
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Tsutomu Furukawa
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
7
|
Imamura T, Obata C, Yoneyama K, Ichikawa M, Ikura A, Mutsuro-Aoki H, Ishikawa T, Kawai-Yamada M, Sasaki T, Kusano H, Shimada H. DSH5, a dihydrosphingosine C4 hydroxylase gene family member, shows spatially restricted expression in rice and is lethal when expressed ectopically. Genes Genet Syst 2018; 93:135-142. [PMID: 30185720 DOI: 10.1266/ggs.17-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dihydrosphingosine C4 hydroxylase (DSH), a diiron-binding membrane enzyme, catalyzes the hydration of dihydrosphingosine and acyl-sphinganine to produce phytosphingosine and phytoceramide, respectively. Rice has two types of DSH homologs: general DSHs, namely DSH1, DSH2 and DSH4, and others that show spatial expression profiles, namely DSH3 and DSH5. The general DSHs exist in many plant species. These DSHs showed similarity in their functions and complemented the yeast sur2D mutation. In contrast, homologs of DSH3 and DSH5 were found only in monocot plants. Phylogenetic analysis placed these DSHs in different clades that are evolutionarily divergent from those of the general DSHs. DSH3 and DSH5 showed low-level expression. DSH5 expression was specifically in vascular bundle tissues. Ectopic expression of DSH5 induced a dwarf phenotype characterized by severe growth inhibition and an increase in the thickness of the leaf body caused by enlargement of bulliform cells in the leaves. However, no significant difference was observed in the amount of sphingolipid species. DSH5 did not complement the yeast sur2D mutation, implying that DSH5 has little effect on sphingolipid metabolism. These findings suggested that DSH3 and DSH5 originated and diverged in monocot plants.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science
| | - Chihiro Obata
- Department of Biological Science and Technology, Tokyo University of Science
| | - Kazuyoshi Yoneyama
- Department of Biological Science and Technology, Tokyo University of Science
| | - Masatoshi Ichikawa
- Department of Biological Science and Technology, Tokyo University of Science
| | - Akane Ikura
- Department of Biological Science and Technology, Tokyo University of Science
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science
| | | | | | - Tadamasa Sasaki
- Department of Biological Science and Technology, Tokyo University of Science
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science
| |
Collapse
|
8
|
Begum MA, Shi XX, Tan Y, Zhou WW, Hannun Y, Obeid L, Mao C, Zhu ZR. Molecular Characterization of Rice OsLCB2a1 Gene and Functional Analysis of its Role in Insect Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:1789. [PMID: 27990147 PMCID: PMC5130998 DOI: 10.3389/fpls.2016.01789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 05/22/2023]
Abstract
In plants, sphingolipids, such as long-chain bases (LCBs), act as bioactive molecules in stress responses. Until now, it is still not clear if these lipids are involved in biotic stress responses to herbivore. Herein we report that a rice LCB gene, OsLCB2a1 encoding a subunit of serine palmitoyltransferase (SPT), a key enzyme responsible for the de novo biosynthesis of sphingolipids, plays a critical role in plant defense response to the brown planthopper (BPH) attack and that its up-regulation protects plants from herbivore infestation. Transcripts of OsLCB2a1 gene in rice seedlings were increased at 4 h, but decreased at 8-24 h after BPH attack. Sphingolipid measurement profiling revealed that overexpression of OsLCB2a1 in Arabidopsis thaliana increased trihydroxylated LCB phytosphingosine (t18:0) and phytoceramide by 1.7 and 1.3-fold, respectively, compared with that of wild type (WT) plants. Transgenic Arabidopsis plants also showed higher callose and wax deposition in leaves than that of WT. Overexpression of OsLCB2a1 gene in A. thaliana reduced the population size of green peach aphid (Myzus persicae). Moreover, the electrical penetration graph (EPG) results indicated that the aphids encounter resistance factors while reaching for the phloem on the transgenic plants. The defense response genes related to salicylic acid signaling pathway, remained uplgulated in the OsLCB2a1-overexpressing transgenic plants. Our data highlight the key functions of OsLCB2a1 in biotic stress response in plants.
Collapse
Affiliation(s)
- Mahfuj A. Begum
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Xiao-Xiao Shi
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Ye Tan
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Yusuf Hannun
- Stony Brook Cancer Center, Department of Medicine, The State University of New York at Stony BrookNew York, NY, USA
| | - Lina Obeid
- Stony Brook Cancer Center, Department of Medicine, The State University of New York at Stony BrookNew York, NY, USA
| | - Cungui Mao
- Stony Brook Cancer Center, Department of Medicine, The State University of New York at Stony BrookNew York, NY, USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture and Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
9
|
Wu Y, Huang M, Tao X, Guo T, Chen Z, Xiao W. Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Mol Genet Genomics 2016; 291:1927-40. [PMID: 27380139 DOI: 10.1007/s00438-016-1227-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/11/2016] [Indexed: 11/30/2022]
Abstract
Rice yield is a complex trait controlled by quantitative trait loci (QTLs). In the past three decades, thousands of QTLs for rice yield traits have been detected, but only a very small percentage has been cloned to date, as identifying the QTL genes requires a substantial investment of time and money. Meta-analysis provides a simple, reliable, and economical method for integrating information from multiple QTL studies across various environmental and genetic backgrounds, detecting consistent QTLs powerfully and estimating their genetic positions precisely. In this study, we aimed to locate consistent QTL regions associated with rice panicle traits by applying a genome-wide QTL meta-analysis approach. We first conducted a QTL analysis of 5 rice panicle traits using 172 plants in 2011 and 138 plants in 2012 from an F2 population derived from a cross between Nipponbare and H71D rice cultivators. A total of 54 QTLs were detected, and these were combined with 1085 QTLs collected from 82 previous studies to perform a meta-analysis using BioMercator v4.2. The integration of 82 maps resulted in a consensus map with 6970 markers and a total map length of 1823.1 centimorgan (cM), on which 837 QTLs were projected. These QTLs were then integrated into 87 meta-quantitative trait loci (MQTLs) by meta-analysis, and the 95 % confidence intervals (CI) of them were smaller than the mean value of the original QTLs. Also, 30 MQTLs covered 47 of the 54 QTLs detected from the cross between Nipponbare and H71D in this study. Among them, the two major and stable QTLs, spp10.1 and sd10.1, were found to be included in MQTL10.4. The three other major QTLs, pl3.1, sb2.1, and sb10.1, were included in MQTL3.3, MQTL2.2, and MQTL10.3, respectively. A total of 21 of the 87 MQTLs' phenotypic variation were >20 %. In total, 24 candidate genes were found in 15 MQTLs that spanned physical intervals <0.2 Mb, including genes that have been cloned previously, e.g., EP3, LP, MIP1, HTD1, DSH1, and OsPNH1. However, it would be beneficial to identify a greater number of candidate genes from these MQTLs. Mining new genes that modulate yield and its related traits would assist researchers to better understand the relevant molecular mechanisms. The MQTLs found in this study that have small physical and genetic intervals are useful not only for marker-assisted selection and pyramiding, but they also provide important information of rice yield and related gene mining for future research.
Collapse
Affiliation(s)
- Yahui Wu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xingxing Tao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Imamura T, Sekine KT, Yamashita T, Kusano H, Shimada H. Production of recombinant thanatin in watery rice seeds that lack an accumulation of storage starch and proteins. J Biotechnol 2016; 219:28-33. [PMID: 26689479 DOI: 10.1016/j.jbiotec.2015.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Molecular farming is a promising method for producing materials of commercial interest. Plants can be expected to be appropriate hosts for recombinant protein production. However, production in genetically modified plants has two major challenges that must be resolved before its practical use: insufficient accumulation of products and difficulty in establishing methods for their purification. We propose a simple procedure for the production of a desired protein using watery rice seeds lacking an accumulation of storage starch and proteins, a phenotype induced by the introduction of an antisense SPK. We produced a transgenic rice plant containing a gene for an antimicrobial peptide, thanatin, together with antisense SPK. Bioassay and proteome analysis indicated that recombinant thanatin accumulated in an active form in these watery rice seeds. These results suggest that our system worked effectively for the production of thanatin. This procedure enabled easy removal of impurities and simplified the purification process compared with production in leaves. Our system may therefore be a useful technique for the production of desired materials, including proteins.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Ken-Taro Sekine
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Tetsuro Yamashita
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| |
Collapse
|
11
|
Chueasiri C, Chunthong K, Pitnjam K, Chakhonkaen S, Sangarwut N, Sangsawang K, Suksangpanomrung M, Michaelson LV, Napier JA, Muangprom A. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development. PLoS One 2014; 9:e106386. [PMID: 25192280 PMCID: PMC4156325 DOI: 10.1371/journal.pone.0106386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 08/07/2014] [Indexed: 12/27/2022] Open
Abstract
The orosomucoids (ORM) are ER-resisdent polypeptides encoded by ORM and ORMDL (ORM-like) genes. In humans, ORMDL3 was reported as genetic risk factor associated to asthma. In yeast, ORM proteins act as negative regulators of sphingolipid synthesis. Sphingolipids are important molecules regulating several processes including stress responses and apoptosis. However, the function of ORM/ORMDL genes in plants has not yet been reported. Previously, we found that temperature sensitive genetic male sterility (TGMS) rice lines controlled by tms2 contain a deletion of about 70 kb in chromosome 7. We identified four genes expressed in panicles, including an ORMDL ortholog, as candidates for tms2. In this report, we quantified expression of the only two candidate genes normally expressed in anthers of wild type plants grown in controlled growth rooms for fertile and sterile conditions. We found that only the ORMDL gene (LOC_Os07g26940) showed differential expression under these conditions. To better understand the function of rice ORMDL genes, we generated RNAi transgenic rice plants suppressing either LOC_Os07g26940, or all three ORMDL genes present in rice. We found that the RNAi transgenic plants with low expression of either LOC_Os07g26940 alone or all three ORMDL genes were sterile, having abnormal pollen morphology and staining. In addition, we found that both sphingolipid metabolism and expression of genes involved in sphingolipid synthesis were perturbed in the tms2 mutant, analogous to the role of ORMs in yeast. Our results indicated that plant ORMDL proteins influence sphingolipid homeostasis, and deletion of this gene affected fertility resulting from abnormal pollen development.
Collapse
Affiliation(s)
- Chutharat Chueasiri
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Ketsuwan Chunthong
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Keasinee Pitnjam
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Sriprapai Chakhonkaen
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Numphet Sangarwut
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Kanidta Sangsawang
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Malinee Suksangpanomrung
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Louise V. Michaelson
- Biological Chemistry Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Johnathan A. Napier
- Biological Chemistry Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Amorntip Muangprom
- National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
12
|
Functional analysis of the C-terminal region of the vacuolar cadmium-transporting rice OsHMA3. FEBS Lett 2014; 588:789-94. [PMID: 24492003 DOI: 10.1016/j.febslet.2014.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
Rice OsHMA3 is a vacuolar cadmium (Cd) transporter belonging to the P1B-ATPase family and has a long (273aa) C-terminal region. We analyzed the function of the region related to Cd using the transgenic Arabidopsis Col-0 ecotype, which is sensitive to Cd. The OsHMA3 variant containing a truncated (58aa) C-terminal region did not confer Cd tolerance, whereas an OsHMA3 variant containing a longer truncated (105aa) C-terminal region conferred Cd tolerance to transgenic Arabidopsis. We conclude that the C-terminal region, particularly the region containing the first 105aa, has an important role in OsHMA3 activity.
Collapse
|
13
|
Zhang H, Zhai J, Mo J, Li D, Song F. Overexpression of rice sphingosine-1-phoshpate lyase gene OsSPL1 in transgenic tobacco reduces salt and oxidative stress tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:652-62. [PMID: 22889013 DOI: 10.1111/j.1744-7909.2012.01150.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sphingolipids, including sphingosine-1-phosphate (S1P), have been shown to function as signaling mediators to regulate diverse aspects of plant growth, development, and stress response. In this study, we performed functional analysis of a rice (Oryza sativa) S1P lyase gene OsSPL1 in transgenic tobacco plants and explored its possible involvement in abiotic stress response. Overexpression of OsSPL1 in transgenic tobacco resulted in enhanced sensitivity to exogenous abscisic acid (ABA), and decreased tolerance to salt and oxidative stress, when compared with the wild type. Furthermore, the expression levels of some selected stress-related genes in OsSPL1-overexpressing plants were reduced after application of salt or oxidative stress, indicating that the altered responsiveness of stress-related genes may be responsible for the reduced tolerance in OsSPL1-overexpressing tobacco plants under salt and oxidative stress. Our results suggest that rice OsSPL1 plays an important role in abiotic stress responses.
Collapse
Affiliation(s)
- Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | |
Collapse
|
14
|
Losada JM, Herrero M. Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. ANNALS OF BOTANY 2012; 110:573-84. [PMID: 22652420 PMCID: PMC3400445 DOI: 10.1093/aob/mcs116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/12/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Stigmatic receptivity plays a clear role in pollination dynamics; however, little is known about the factors that confer to a stigma the competence to be receptive for the germination of pollen grains. In this work, a developmental approach is used to evaluate the acquisition of stigmatic receptivity and its relationship with a possible change in arabinogalactan-proteins (AGPs). METHODS Flowers of the domestic apple, Malus × domestica, were assessed for their capacity to support pollen germination at different developmental stages. Stigmas from these same stages were characterized morphologically and different AGP epitopes detected by immunocytochemistry. KEY RESULTS Acquisition of stigmatic receptivity and the secretion of classical AGPs from stigmatic cells occurred concurrently and following the same spatial distribution. While in unpollinated stigmas AGPs appeared unaltered, in cross-pollinated stigmas AGPs epitopes vanished as pollen tubes passed by. CONCLUSIONS The concurrent secretion of AGPs with the acquisition of stigmatic receptivity, together with the differential response in unpollinated and cross-pollinated pistils point out a role of AGPs in supporting pollen tube germination and strongly suggest that secretion of AGPs is associated with the acquisition of stigma receptivity.
Collapse
Affiliation(s)
- Juan M Losada
- Pomology Department, Aula Dei Experimental Station - CSIC, Zaragoza 50080, Spain.
| | | |
Collapse
|
15
|
Islam MN, Jacquemot MP, Coursol S, Ng CKY. Sphingosine in plants--more riddles from the Sphinx? THE NEW PHYTOLOGIST 2012; 193:51-57. [PMID: 22070536 DOI: 10.1111/j.1469-8137.2011.03963.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
• Sphingolipids are emerging as important mediators of cellular and developmental processes in plants, and advances in lipidomics have yielded a wealth of information on the composition of plant sphingolipidomes. Studies using Arabidopsis thaliana showed that the dihydroxy long-chain base (LCB) is desaturated at carbon position 8 (d18:1(Δ8)). This raised important questions on the role(s) of sphingosine (d18:1(Δ4)) and sphingosine-1-phosphate (d18:1(Δ4)-P) in plants, as these LCBs appear to be absent in A. thaliana. • Here, we surveyed 21 species from various phylogenetic groups to ascertain the position of desaturation of the d18:1 LCB, in order to gain further insights into the prevalence of d18:1(Δ4) and d18:1(Δ8) in plants. • Our results showed that d18:1(Δ8) is common in gymnosperms, whereas d18:1(Δ4) is widespread within nonseed land plants and the Poales, suggesting that d18:1(Δ4) is evolutionarily more ancient than d18:1(Δ8) in Viridiplantae. Additionally, phylogenetic analysis indicated that the sphingolipid Δ4-desaturases from Viridiplantae form a monophyletic group, with Angiosperm sequences falling into two distinct clades, the Eudicots and the Poales. • We propose that efforts to elucidate the role(s) of d18:1(Δ4) and d18:1(Δ4)-P should focus on genetically tractable Viridiplantae species where the d18:1 LCB is desaturated at carbon position 4.
Collapse
Affiliation(s)
- M Nurul Islam
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Sylvie Coursol
- INRA, UMR 320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Carl K-Y Ng
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Moreno-Pérez AJ, Martínez-Force E, Garcés R, Salas JJ. Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): cloning and characterization of a C4-hydroxylase gene and a new paralogous Δ8-desaturase gene. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:831-839. [PMID: 21256623 DOI: 10.1016/j.jplph.2010.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
Sphingolipids are components of plant cell membranes that participate in the regulation of important physiological processes. Unlike their animal counterparts, plant sphingolipids are characterized by high levels of base C4-hydroxylation. Moreover, desaturation at the Δ8 position predominates over the Δ4 desaturation typically found in animal sphingolipids. These modifications are due to the action of C4-hydroxylases and Δ8-long chain base desaturases, and they are important for complex sphingolipids finally becoming functional. The long chain bases of sunflower sphingolipids have high levels of hydroxylated and unsaturated moieties. Here, a C4-long chain base hydroxylase was functionally characterized in sunflower plant, an enzyme that could complement the sur2Δ mutation when heterologously expressed in this yeast mutant deficient in hydroxylation. This hydroxylase was ubiquitously expressed in sunflower, with the highest levels found in the developing cotyledons. In addition, we identified a new Δ8-long base chain desaturase gene that displays strong homology to a previously reported desaturase gene. This desaturase was also expressed in yeast and was able to change the long chain base composition of the transformed host. We studied the expression of this desaturase and compared it with that of the other isoform described in sunflower. The desaturase form studied in this paper displayed higher expression levels in developing seeds.
Collapse
|
17
|
She KC, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. THE PLANT CELL 2010; 22:3280-94. [PMID: 20889913 PMCID: PMC2990130 DOI: 10.1105/tpc.109.070821] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/02/2010] [Accepted: 09/15/2010] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.
Collapse
Affiliation(s)
- Kao-Chih She
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Kazuyoshi Koizumi
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | | | - Makoto Hakata
- National Agricultural Research Center, Joetsu 943-0193, Japan
| | - Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
| | - Masato Fukuda
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Natsuka Naito
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Yumi Tsurumaki
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Mitsuhiro Yaeshima
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Ken'ichiro Matsumoto
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Mari Kudoh
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Eiko Itoh
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Shoshi Kikuchi
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Naoki Kishimoto
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Junshi Yazaki
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Tsuyu Ando
- STAFF Institute, Tsukuba 305-0854, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Tadamasa Sasaki
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
| | - Hikaru Satoh
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
- Address correspondence to
| |
Collapse
|
18
|
Imamura T, Yasuda M, Kusano H, Nakashita H, Ohno Y, Kamakura T, Taguchi S, Shimada H. Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin. Transgenic Res 2009; 19:415-24. [PMID: 19784861 DOI: 10.1007/s11248-009-9320-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 08/28/2009] [Indexed: 11/25/2022]
Abstract
Thanatin is an antimicrobial peptide with a strong and wide-ranging antimicrobial spectrum, including certain species of fungi and Gram-negative and Gram-positive bacteria. To evaluate the application of thanatin to the generation of disease-resistant plants, we introduced a synthetic thanatin gene into rice. Several transformants that expressed the introduced gene showed significant level of antimicrobial activity. The substances showing antimicrobial activity were partially purified from these transformants and their properties were determined. The molecule with characteristics similar to those of native thanatin on the elution pattern in HPLC analysis had an identical molecular mass to that of native molecule. It should also be noted that the transformant acquired a sufficient level of resistance to the rice blast fungus, Magnaporthe oryzae, presumably due to the repressive activity of thanatin to its initial stage of infection. This result demonstrates that thanatin has antifungal activity for M. oryzae and that the introduction of the thanatin gene into rice is effective in generating a plant resistant to rice blast disease.
Collapse
Affiliation(s)
- Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0371-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Lessire R, Cahoon E, Chapman K, Dyer J, Eastmond P, Heinz E. Highlights of recent progress in plant lipid research. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:443-447. [PMID: 19328004 DOI: 10.1016/j.plaphy.2009.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
Raw fossil material reserves are not inexhaustible and as prices continue to raise it is necessary to find new sources of alternative and renewable energy. Oils from oleaginous field crops (sunflower and rape) with properties close to those of fossil fuel could constitute an alternative source of energy for the production of raw materials. This is the context in which the 18th International Symposium on Plant lipids (ISPL) was held in Bordeaux from 20th to 25th July 2008 at "La Cité Mondiale". The 18th ISPL gathered 270 researchers from 33 countries. Sixty nine oral communications and 136 posters were presented during the 12 sessions of the Symposium. The sessions have covered all the different aspects of the Plant Lipid field including: Surface lipids: suberin, cutin and waxes, Fatty acids, Glycerolipids, Plant lipids as renewable sources of energy, Seed oils and bioengineering of metabolic pathways, Lipid catabolism, Models for lipid studies: lower plants, micro-organisms and others, Modifications of proteins by lipids, Sphingolipids, sterols and isoprenoids, Lipid signaling and plant stress responses, Lipid trafficking and membrane dynamics, New methods and technologies: functional lipidomics, fluxome, modelling. During the ISPL 2008 Bordeaux, important and new information was reported in the different fields. A selection of these results is presented here.
Collapse
Affiliation(s)
- R Lessire
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Case 92, Université V Segalen Bordeaux 2, 1Bordeaux Cedex, France.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Pata MO, Wu BX, Bielawski J, Xiong TC, Hannun YA, Ng CKY. Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1000-9. [PMID: 18547394 PMCID: PMC3072431 DOI: 10.1111/j.1365-313x.2008.03569.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY Sphingolipids are a structurally diverse group of molecules based on long-chain sphingoid bases that are found in animal, fungal and plant cells. In contrast to the situation in animals and yeast, much less is known about the spectrum of sphingolipid species in plants and the roles they play in mediating cellular processes. Here, we report the cloning and characterization of a plant ceramidase from rice (Oryza sativa spp. Japonica cv. Nipponbare). Sequence analysis suggests that the rice ceramidase (OsCDase) is similar to mammalian neutral ceramidases. We demonstrate that OsCDase is a bona fide ceramidase by heterologous expression in the yeast double knockout mutant Deltaypc1Deltaydc1 that lacks the yeast ceramidases YPC1p and YDC1p. Biochemical characterization of OsCDase showed that it exhibited classical Michaelis-Menten kinetics, with optimum activity between pH 5.7 and 6.0. OsCDase activity was enhanced in the presence of Ca(2+), Mg(2+), Mn(2+) and Zn(2+), but inhibited in the presence of Fe(2+). OsCDase appears to use ceramide instead of phytoceramide as a substrate. Subcellular localization showed that OsCDase is localized to the endoplasmic reticulum and Golgi, suggesting that these organelles are sites of ceramide metabolism in plants.
Collapse
Affiliation(s)
- Mickael O. Pata
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bill X. Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, U.S.A
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, U.S.A
| | - Tou Cheu Xiong
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yusuf A. Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, U.S.A
| | - Carl K.-Y. Ng
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update 2008; 14:519-36. [PMID: 18562325 DOI: 10.1093/humupd/dmn023] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two prominent signaling lysophospholipids (LPs) exerting their functions through a group of G protein-coupled receptors (GPCRs). This review covers current knowledge of the LP signaling in the function and pathology of the reproductive system. METHODS PubMed was searched up to May 2008 for papers on lysophospholipids/LPA/S1P/LPC/SPC in combination with each part of the reproductive system, such as testis/ovary/uterus. RESULTS LPA and SIP are found in significant amounts in serum and other biological fluids. To date, 10 LP receptors have been identified, including LPA(1-5) and S1P(1-5). In vitro and in vivo studies from the past three decades have demonstrated or suggested the physiological functions of LP signaling in reproduction, such as spermatogenesis, male sexual function, ovarian function, fertilization, early embryo development, embryo spacing, implantation, decidualization, pregnancy maintenance and parturition, as well as pathological roles in ovary, cervix, mammary gland and prostate cancers. CONCLUSIONS Receptor knock-out and other studies indicate tissue-specific and receptor-specific functions of LP signaling in reproduction. More comprehensive studies are required to define mechanisms of LP signaling and explore the potential use as a therapeutic target.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Zhang C, Barthelson RA, Lambert GM, Galbraith DW. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. PLANT PHYSIOLOGY 2008; 147:30-40. [PMID: 18354040 PMCID: PMC2330299 DOI: 10.1104/pp.107.115246] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/13/2008] [Indexed: 05/18/2023]
Abstract
We describe a simple and highly effective means for global identification of genes that are expressed within specific cell types within complex tissues. It involves transgenic expression of nuclear-targeted green fluorescent protein in a cell-type-specific manner. The fluorescent nuclei are then purified from homogenates by fluorescence-activated sorting, and the RNAs employed as targets for microarray hybridization. We demonstrate the validity of the approach through the identification of 12 genes that are selectively expressed in phloem.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Plant Sciences , The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|