1
|
Yao L, Wang J, Yang K, Hu N, Li B, Meng Y, Ma X, Si E, Shang X, Wang H. Proteomic analysis reveals molecular mechanism of Cd 2+ tolerance in the leaves of halophyte Halogeton glomeratus. J Proteomics 2022; 269:104703. [PMID: 36084920 DOI: 10.1016/j.jprot.2022.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022]
Abstract
Halogeton glomeratus (H. glomeratus) is categorized as a halophyte, it can potentially endure not only salt but also heavy metals. The aim of this work was to study the molecular mechanisms underlying the Cd2+ tolerance of halophyte H. glomeratus seedlings. For that we used a combination of physiological characteristics and data-independent acquisition-based proteomic approaches. The results revealed that the significant changes of physiological characteristics of H. glomeratus occurred under approximately 0.4 mM Cd2+ condition and that Cd2+ accumulated in Cd2+-treated seedling roots, stems and leaves. At the early stage of Cd2+ stress, numerous differentially abundant proteins related to "phosphoenolpyruvate carboxylase", "transmembrane transporters", and "vacuolar protein sorting-associated protein" took important roles in the response of H. glomeratus to Cd2+ stress. At the later stage of Cd2+ stress, some differentially abundant proteins involved in "alcohol-forming fatty acyl-CoA reductase", "glutathione transferase", and "abscisic acid receptor" were considered to regulate the adaptation of H. glomeratus exposed to Cd2+ stress. Finally, we found various detoxification-related differentially abundant proteins related to Cd2+ stress. These biological processes and regulators synergistically regulated the Cd2+ tolerance of H. glomeratus. SIGNIFICANCE: The halophyte, H.glomeratus, has a strong tolerance to salinity, also survives in the heavy metal stress. At present, there are few reports on the comprehensive characterization and identification of Cd2+ response and adaption related regulators in H.glomeratus. This research focuses on the molecular mechanisms of H. glomeratus tolerance to Cd2+ stress at proteome levels to uncover the novel insight of the Cd2+-related biological processes and potential candidates involved in the response and adaption mechanism. The results will help elucidate the genetic basis of this species' tolerance to Cd2+ stress and develop application prospect of wild genetic resources to heavy metal phytoremediation.
Collapse
Affiliation(s)
- Lirong Yao
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juncheng Wang
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ke Yang
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Na Hu
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baochun Li
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaxiong Meng
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaole Ma
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Erjing Si
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huajun Wang
- State Key Laboratory of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Trono D, Laus MN, Soccio M, Pastore D. Transport pathways--proton motive force interrelationship in durum wheat mitochondria. Int J Mol Sci 2014; 15:8186-215. [PMID: 24821541 PMCID: PMC4057727 DOI: 10.3390/ijms15058186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022] Open
Abstract
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
3
|
Frascaroli E, Landi P. Divergent selection in a maize population for germination at low temperature in controlled environment: study of the direct response, of the trait inheritance and of correlated responses in the field. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:733-746. [PMID: 23178876 DOI: 10.1007/s00122-012-2014-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/24/2012] [Indexed: 05/20/2023]
Abstract
Improving cold tolerance in maize (Zea mays L.) is an important breeding objective, allowing early sowings which result in many agronomic advantages. Using as source the F(2) population of B73 × IABO78 single cross, we previously conducted four cycles of divergent recurrent selection for high (H) and low (L) cold tolerance level, evaluated as the difference (DG) between germination at 9.5 °C and at 25 °C in the germinator. Then, we pursued the divergent selection in inbreeding from S(1) to S(4). This research was conducted to study (1) the direct response to selection (by testing ten S(4) L and ten S(4) H lines), (2) the trait inheritance (in a complete diallel scheme involving four L and four H lines), (3) the associated responses for cold tolerance in the field (at early and delayed sowings) and (4) the responses for other traits, by testing the ten L and the ten H lines at usual sowing. Selection was effective, leading to appreciable and symmetric responses for DG. Variation among crosses was mainly due to additive effects and the ability to predict hybrid DG based on parental lines DG was appreciable. Associated responses for cold tolerance traits in the field were noticeable, though the relationship between DG and these traits was not outstanding. High tolerance was also associated with early flowering, short plants, less leaves, low kernel moisture, red and thin cob, and flint kernels. These divergently selected lines can represent valuable materials for undertaking basic studies and breeding works concerning cold tolerance.
Collapse
Affiliation(s)
- Elisabetta Frascaroli
- Department of Agroenvironmental Sciences and Technologies, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | | |
Collapse
|
4
|
Tampieri E, Baraldi E, Carnevali F, Frascaroli E, De Santis A. The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. J Bioenerg Biomembr 2011; 43:611-21. [PMID: 21989547 DOI: 10.1007/s10863-011-9386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022]
Abstract
The proteins performing the activity of the inner membrane anion channel (IMAC) and its plant counterpart (PIMAC) are still unknown. Lurin et al. (Biochem J 348: 291-295, 2000) indicated that a chloride channel (CLC) protein corresponds to PIMAC activity in tobacco seedling mitochondria. In this study, we investigated: (i) the presence of a CLC protein in maize seedling mitochondria; (ii) the involvement of this protein in plant cold tolerance; and (iii) its possible role in PIMAC activity. We validated the presence of a CLC protein (ZmCLCc) in maize mitochondria by immunoassay using a polyclonal antibody against its C-terminus. The differential expression of the ZmCLCc protein in mitochondria was measured in seedlings of maize populations divergently selected for cold tolerance and grown at different temperatures. The ZmCLCc protein level was higher in cold stressed than in non-stressed growing conditions. Moreover, the ZmCLCc level showed a direct relationship with the cold sensitivity level of the populations under both growing conditions, suggesting that selection for cold tolerance induced a constitutive change of the ZmCLCc protein amount in mitochondria. The anti-ZmCLCc antibody inhibited (about 60%) the channel-mediated anion translocations by PIMAC, whereas the same antibody did not affect the free diffusion of potassium thiocyanide through the inner mitochondrial membrane. For this reason, we conclude that the mitochondrial ZmCLCc protein can perform the PIMAC activity in maize seedlings.
Collapse
Affiliation(s)
- Elisabetta Tampieri
- Laboratory of Plant Physiology, Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche, 60123, Ancona, Italy
| | | | | | | | | |
Collapse
|