1
|
Tokonami S, Nakasone Y, Terazima M. Effects of N- and C-terminal regions on oligomeric formation of blue light sensor protein SyPixD. Protein Sci 2023; 32:e4658. [PMID: 37184370 PMCID: PMC10211260 DOI: 10.1002/pro.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
A sensor of blue-light using flavin adenine dinucleotide (BLUF) is a typical blue light photoreceptor domain that is found in many photosensor proteins in bacteria and some eukaryotic algae. SyPixD in Synechocystis is one of the well-studied BLUF proteins. In the dark state, it forms a decamer and, upon photoexcitation, a dissociation reaction takes place to yield dimers. Such change in the intermolecular interactions of the protomers is important for the biological function. The effect of the N- and C-terminal sequences on the stability of SyPixD oligomeric states and photoreactions of SyPixD were studied to understand how the oligomeric form is maintained with weak interaction. It was found that a few residues that frequently persist at the N-terminus after removing a tag for purification are sensitive to the stability of the decamer structure. Even two or three residues at the N-terminus considerably reduces decamer stability, whereas four or more residues completely prevent decamer formation. Unexpectedly, truncating C-terminal sequences, which locate far from any protomer interface and of which structure is undetermined in crystal structure, also destabilizes the decamer structure. This destabilization is also apparent from the dissociation reaction dynamics detected by the transient grating and transient absorption measurements. The dissociation reaction is faster and the yield increases when the C-terminus does not contain seven amino acid residues. Photoexcitation induces a conformational change in the C-terminus of the decamer but not the dimer.
Collapse
Affiliation(s)
- Shunrou Tokonami
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| |
Collapse
|
2
|
Shibata K, Nakasone Y, Terazima M. Salt effect on the selective photoinduced dimerization of a BLUF domain of EB1. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Nakasone Y, Terazima M. Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains. Photochem Photobiol Sci 2022; 21:493-507. [PMID: 35391638 DOI: 10.1007/s43630-022-00214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
BLUF (blue light sensor using flavin) proteins are the blue light receptors that consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region shifts to red. Light signal received in the BLUF domain is intramolecularly or intermolecularly transmitted to the functional region. In this review, the reactions of three BLUF proteins with similar EAL functional groups within the protein (BlrP1, and YcgF), or with a separated target protein (PapB) are described using time-resolved diffusion technique. The diffusion coefficients (D) of the BLUF domains did not significantly change upon photoexcitation, whereas those of the full-length proteins BlrP1 and YcgF and the PapB-PapA system significantly decreased. The changes in D should be due to diffusion-sensitive conformational changes (DSCC) that alter the friction of diffusion. The time constants of the major D changes of BlrP1 and PapB-PapA were similar (~ 20 ms), although the magnitude of the friction change depended on the proteins. Similarities and differences among the reactions of these proteins were clarified from the viewpoint of DSCC.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Tokonami S, Onose M, Nakasone Y, Terazima M. Slow Conformational Changes of Blue Light Sensor BLUF Proteins in Milliseconds. J Am Chem Soc 2022; 144:4080-4090. [PMID: 35196858 DOI: 10.1021/jacs.1c13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue light sensor using flavin (BLUF) proteins consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region exhibits a red shift. Ultimately, the light information received in the BLUF domain is transmitted to the functional region. It has been believed that this red shift is complete within nanoseconds. In this study, slow reaction kinetics were discovered in milliseconds (τ1- and τ2-phase) for all the BLUF proteins examined (AppA, OaPAC, BlrP1, YcgF, PapB, SyPixD, and TePixD). Despite extensive reports on BLUF, this is the first clear observation of the BLUF protein absorption change with the duration in the millisecond time region. From the measurements of some domain-deleted mutants of OaPAC and two chimeric mutants of PixD proteins, it was found that the slower dynamics (τ2-phase) are strongly affected by the size and nature of the C-terminal region adjacent to the BLUF domain. Hence, this millisecond reaction is a significant indicator of conformational changes in the C-terminal region, which is essential for the biological functions. On the other hand, the τ1-phase commonly exists in all BLUF proteins, including any mutants. The origin of the slow dynamics was studied using site-specific mutants. These results clearly show the importance of Trp in the BLUF domain. Based on this, a reaction scheme for the BLUF reaction is proposed.
Collapse
Affiliation(s)
- Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Morihiko Onose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Mondal P, Schwinn K, Huix-Rotllant M. Impact of the redox state of flavin chromophores on the UV–vis spectra, redox and acidity constants and electron affinities. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Nakasone Y, Kikukawa K, Masuda S, Terazima M. Time-Resolved Study of Interprotein Signaling Process of a Blue Light Sensor PapB–PapA Complex. J Phys Chem B 2019; 123:3210-3218. [DOI: 10.1021/acs.jpcb.9b00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Koutaro Kikukawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-5801, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Mathes T, Götze JP. A proposal for a dipole-generated BLUF domain mechanism. Front Mol Biosci 2015; 2:62. [PMID: 26579529 PMCID: PMC4630285 DOI: 10.3389/fmolb.2015.00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022] Open
Abstract
The resting and signaling structures of the blue-light sensing using flavin (BLUF) photoreceptor domains are still controversially debated due to differences in the molecular models obtained by crystal and NMR structures. Photocycles for the given preferred structural framework have been established, but a unifying picture combining experiment and theory remains elusive. We summarize present work on the AppA BLUF domain from both experiment and theory. We focus on IR and UV/vis spectra, and to what extent theory was able to reproduce experimental data and predict the structural changes upon formation of the signaling state. We find that the experimental observables can be theoretically reproduced employing any structural model, as long as the orientation of the signaling essential Gln63 and its tautomer state are a choice of the modeler. We also observe that few approaches are comparative, e.g., by considering all structures in the same context. Based on recent experimental findings and a few basic calculations, we suggest the possibility for a BLUF activation mechanism that only relies on electron transfer and its effect on the local electrostatics, not requiring an associated proton transfer. In this regard, we investigate the impact of dispersion correction on the interaction energies arising from weakly bound amino acids.
Collapse
Affiliation(s)
- Tilo Mathes
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Netherlands ; Institut für Biologie/Experimentelle Biophysik, Humboldt Universität zu Berlin Berlin, Germany
| | - Jan P Götze
- School of Chemistry, University of St Andrews St Andrews, UK
| |
Collapse
|
8
|
Nudel CB, Hellingwerf KJ. Photoreceptors in Chemotrophic Prokaryotes: The Case of Acinetobacter spp. Revisited. Photochem Photobiol 2015; 91:1012-20. [PMID: 26147719 DOI: 10.1111/php.12491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022]
Abstract
A comprehensive description of blue light using flavin (BLUF) photosensory proteins, including preferred domain architectures and the molecular mechanism of their light activation and signal generation, among chemotrophic prokaryotes is presented. Light-regulated physiological responses in Acinetobacter spp. from environmental and clinically relevant strains are discussed. The twitching motility response in A. baylyi sp. ADP1 and the joint involvement of three of the four putative BLUF-domain-containing proteins in this response, in this species, is presented as an example of remarkable photoreceptor redundancy.
Collapse
Affiliation(s)
- Clara B Nudel
- Nanobiotec Institute, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Fraikin GY, Strakhovskaya MG, Belenikina NS, Rubin AB. Bacterial photosensory proteins: Regulatory functions and optogenetic applications. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Fujisawa T, Takeuchi S, Masuda S, Tahara T. Signaling-State Formation Mechanism of a BLUF Protein PapB from the Purple Bacterium Rhodopseudomonas palustris Studied by Femtosecond Time-Resolved Absorption Spectroscopy. J Phys Chem B 2014; 118:14761-73. [PMID: 25406769 DOI: 10.1021/jp5076252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the signaling-state formation of a BLUF (blue light using FAD) protein, PapB, from the purple bacterium Rhodopseudomonas palustris, using femtosecond time-resolved absorption spectroscopy. Upon photoexcitation of the dark state, FADH(•) (neutral flavin semiquinone FADH radical) was observed as the intermediate before the formation of the signaling state. The kinetic analysis based on singular value decomposition showed that FADH(•) mediates the signaling-state formation, showing that PapB is the second example of FADH(•)-mediated formation of the signaling state after Slr1694 (M. Gauden et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10895-10900). The mechanism of the signaling-state formation is discussed on the basis of the comparison between femtosecond time-resolved absorption spectra of the dark state and those obtained by exciting the signaling state. FADH(•) was observed also with excitation of the signaling state, and surprisingly, the kinetics of FADH(•) was indistinguishable from the case of exciting the dark state. This result suggests that the hydrogen bond environment in the signaling state is realized before the formation of FADH(•) in the photocycle of PapB.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, and Earth-Life Science Institute, Tokyo Institute of Technology , Yokohama 226-8501, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN , 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
11
|
Conrad KS, Manahan CC, Crane BR. Photochemistry of flavoprotein light sensors. Nat Chem Biol 2014; 10:801-9. [PMID: 25229449 PMCID: PMC4258882 DOI: 10.1038/nchembio.1633] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
Three major classes of flavin photosensors, light oxygen voltage (LOV) domains, blue light sensor using FAD (BLUF) proteins and cryptochromes (CRYs), regulate diverse biological activities in response to blue light. Recent studies of structure, spectroscopy and chemical mechanism have provided unprecedented insight into how each family operates at the molecular level. In general, the photoexcitation of the flavin cofactor leads to changes in redox and protonation states that ultimately remodel protein conformation and molecular interactions. For LOV domains, issues remain regarding early photochemical events, but common themes in conformational propagation have emerged across a diverse family of proteins. For BLUF proteins, photoinduced electron transfer reactions critical to light conversion are defined, but the subsequent rearrangement of hydrogen bonding networks key for signaling remains highly controversial. For CRYs, the relevant photocycles are actively debated, but mechanistic and functional studies are converging. Despite these challenges, our current understanding has enabled the engineering of flavoprotein photosensors for control of signaling processes within cells.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Craig C Manahan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Abstract
Light-induced difference Fourier transform infrared (FTIR) spectroscopy is a powerful, sensitive, and informative method to study structure-function relationships in photoreceptive proteins. Strong absorption of water in the IR region is always problematic in this method, but if water content in the sample is controlled during measurements, this method can provide useful information on a single protein-bound water molecule. We established three kinds of sample preparations: hydrated film, redissolved sample, and concentrated solution. Hydrated films were used for the measurements of LOV and BLUF domains, where accurate difference FTIR spectra were obtained in the whole mid-IR region (4,000-800 cm(-1)). Vibrations of S-H stretch of cysteine, O-H stretch of water, and O-H stretch of tyrosine provide important information on hydrogen bonds in these proteins. Redissolved samples were used for the measurements of (6-4) photolyase, in which enzymatic turnover takes place. From the illumination time-dependence of excess amount of substrate, it is possible to isolate the signal originating from the binding of enzyme to substrate. If proteins are less tolerant to drying, as for example cryptochromes of the DASH type, concentrated solution is used. Detailed methodological aspects in light-induced difference FTIR spectroscopy are reviewed by mainly focusing on our results.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | | |
Collapse
|
13
|
Winkler A, Udvarhelyi A, Hartmann E, Reinstein J, Menzel A, Shoeman RL, Schlichting I. Characterization of elements involved in allosteric light regulation of phosphodiesterase activity by comparison of different functional BlrP1 states. J Mol Biol 2013; 426:853-68. [PMID: 24291457 PMCID: PMC3989770 DOI: 10.1016/j.jmb.2013.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022]
Abstract
Bacteria have evolved dedicated signaling mechanisms that enable the integration of a range of environmental stimuli and the accordant modulation of metabolic pathways. One central signaling molecule in bacteria is the second messenger cyclic dimeric GMP (c-di-GMP). Complex regulatory mechanisms for modulating c-di-GMP concentrations have evolved, in line with its importance for maintaining bacterial fitness under changing environmental conditions. One interesting example in this context is the blue-light-regulated phosphodiesterase 1 (BlrP1) of Klebsiella pneumoniae. This covalently linked system of a sensor of blue light using FAD (BLUF) and an EAL phosphodiesterase domain orchestrates the light-dependent down-regulation of c-di-GMP levels. To reveal details of light-induced structural changes involved in EAL activity regulation, we extended previous crystallographic studies with hydrogen–deuterium exchange experiments and small-angle X-ray scattering analysis of different functional BlrP1 states. The combination of hydrogen–deuterium exchange and small-angle X-ray scattering allows the integration of local and global structural changes and provides an improved understanding of light signaling via an allosteric communication pathway between the BLUF and EAL domains. This model is supported by results from a mutational analysis of the EAL dimerization region and the analysis of metal-coordination effects of the EAL active site on the dark-state recovery kinetics of the BLUF domain. In combination with structural information from other EAL domains, the observed bidirectional communication points to a general mechanism of EAL activity regulation and suggests that a similar allosteric coupling is maintained in catalytically inactive EAL domains that retain a regulatory function. C-di-GMP is a central bacterial signaling molecule integrating environmental stimuli. BlrP1 enables the light-regulated degradation of c-di-GMP. Light-induced structural changes involve subtle quaternary structure rearrangements. Light signal integration involves allosteric signaling between BLUF and EAL. Analysis of different functional states reveals details of this communication pathway.
Collapse
Affiliation(s)
- Andreas Winkler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - Anikó Udvarhelyi
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - Elisabeth Hartmann
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | - Robert L Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Ren S, Sato R, Hasegawa K, Ohta H, Masuda S. A predicted structure for the PixD-PixE complex determined by homology modeling, docking simulations, and a mutagenesis study. Biochemistry 2013; 52:1272-9. [PMID: 23346988 DOI: 10.1021/bi301004v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PixD is a blue light-using flavin (BLUF) photoreceptor that controls phototaxis in the cyanobacterium Synechocystis sp. PCC6803. PixD interacts with the response regulator-like protein PixE in a light-dependent manner, and this interaction is critical for light signal transduction in vivo. However, the structure of the PixD-PixE complex has not been determined. To improve our understanding of how PixD transmits its captured light signal to PixE, we used blue-native polyacrylamide gel electrophoresis to characterize the molecular mass of a recombinant PixD-PixE complex purified from Escherichia coli and found it to be 342 kDa, suggesting that the complex contains 10 PixD and 4 PixE monomers. The stoichiometry of the complex was confirmed by Western blotting. Specifically, three intermediate states, PixD(10)-PixE(1), PixD(10)-PixE(2), and PixD(10)-PixE(3), were detected. The apparent dissociation constant for PixE and PixD is ~5 μM. A docking simulation was performed using a modeled PixE structure and the PixD(10) crystal structure. The docking simulation showed how the molecules in the PixD(10)-PixE(4) structure interact. To verify the accuracy of the docked model, a site-directed mutagenesis study was performed in which Arg80 of PixE, which appears to be capable of interacting electrostatically with Asp135 of PixD in the predicted structure, was shown to be critical for complex formation as mutation of PixE Arg80 to Asp or Ala prevented PixD-PixE complex formation. This study provides a structural basis for future investigations of the light signal transduction mechanism involving PixD and PixE.
Collapse
Affiliation(s)
- Shukun Ren
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
15
|
Masuda S. Light detection and signal transduction in the BLUF photoreceptors. PLANT & CELL PHYSIOLOGY 2013; 54:171-179. [PMID: 23243105 DOI: 10.1093/pcp/pcs173] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BLUF (sensor of blue light using FAD) domain-containing proteins are one of three types of flavin-binding, blue-light-sensing proteins found in many bacteria and some algae. The other types of blue-light-sensing proteins are the cryptochromes and the light, oxygen, voltage (LOV) domain-containing proteins. BLUF proteins control a wide variety of light-dependent physiological activities including photosystem synthesis, biofilm formation and the photoavoidance response. The BLUF domain photochemical reaction is unique in that only small chromophore structural changes are involved in the light activation process, because the rigid flavin moiety is involved, rather than an isomerizable chromophore (e.g. phytochromobilin in phytochromes and retinal in rhodopsins). Recent spectroscopic, biochemical and structural studies have begun to elucidate how BLUF domains transmit the light-induced signal and identify related, subsequent changes in the domain structures. Herein, I review progress made to date concerning the physiological functions and the phototransduction mechanism of BLUF proteins.
Collapse
Affiliation(s)
- Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|