1
|
Poirier MC, Fugard K, Cvetkovska M. Light quality affects chlorophyll biosynthesis and photosynthetic performance in Antarctic Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2025; 163:9. [PMID: 39832016 DOI: 10.1007/s11120-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species. Chlamydomonas priscui is found exclusively in the deep photic zone where it receives very low light levels biased in the blue part of the spectrum (400-500 nm). In contrast, Chlamydomonas sp. ICE-MDV is represented at various depths within the water column (including the bright surface waters), and it receives a broad range of light levels and spectral wavelengths. The psychrophilic character of both species makes them an ideal system to study the effects of light quality and quantity on chlorophyll biosynthesis and photosynthetic performance in extreme conditions. We show that the shade-adapted C. priscui exhibits a decreased ability to accumulate chlorophyll and severe photoinhibition when grown under red light compared to blue light. These effects are particularly pronounced under red light of higher intensity, suggesting a loss of capability to acclimate to varied light conditions. In contrast, ICE-MDV has retained the ability to synthesize chlorophyll and maintain photosynthetic efficiency under a broader range of light conditions. Our findings provide insights into the mechanisms of photosynthesis under extreme conditions and have implications on algal survival in changing conditions of Antarctic ice-covered lakes.
Collapse
Affiliation(s)
- Mackenzie C Poirier
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Kassandra Fugard
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Ware MA, Paton AJ, Bai Y, Kassaw T, Lohr M, Peers G. Identifying the gene responsible for non-photochemical quenching reversal in Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2113-2126. [PMID: 39476224 PMCID: PMC11629738 DOI: 10.1111/tpj.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
Algae such as diatoms and haptophytes have distinct photosynthetic pigments from plants, including a novel set of carotenoids. This includes a primary xanthophyll cycle comprised of diadinoxanthin and its de-epoxidation product diatoxanthin that enables the switch between light harvesting and non-photochemical quenching (NPQ)-mediated dissipation of light energy. The enzyme responsible for the reversal of this cycle was previously unknown. Here, we identified zeaxanthin epoxidase 3 (ZEP3) from Phaeodactylum tricornutum as the candidate diatoxanthin epoxidase. Knocking out the ZEP3 gene caused a loss of rapidly reversible NPQ following saturating light exposure. This correlated with the maintenance of high concentrations of diatoxanthin during recovery in low light. Xanthophyll cycling and NPQ relaxation were restored via complementation of the wild-type ZEP3 gene. The zep3 knockout strains showed reduced photosynthetic rates at higher light fluxes and reduced specific growth rate in variable light regimes, likely due to the mutant strains becoming locked in a light energy dissipation state. We were able to toggle the level of NPQ capacity in a time and dose dependent manner by placing the ZEP3 gene under the control of a β-estradiol inducible promoter. Identification of this gene provides a deeper understanding of the diversification of photosynthetic control in algae compared to plants and suggests a potential target to improve the productivity of industrial-scale cultures.
Collapse
Affiliation(s)
- Maxwell A. Ware
- Department of BiologyColorado State UniversityFort CollinsColorado80523USA
- Fachbereich PhysikFreie Universität BerlinBerlin14195Germany
| | - Andrew J. Paton
- Department of BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Yu Bai
- Department of BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Tessema Kassaw
- Department of BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Martin Lohr
- Institut für Molekulare PhysiologieJohannes Gutenberg‐UniversityMainz55099Germany
| | - Graham Peers
- Department of BiologyColorado State UniversityFort CollinsColorado80523USA
| |
Collapse
|
3
|
Mu B, Nair AM, Zhao R. Plastid HSP90C C-terminal extension region plays a regulatory role in chaperone activity and client binding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2288-2302. [PMID: 38969341 DOI: 10.1111/tpj.16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.
Collapse
Affiliation(s)
- Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Adheip Monikantan Nair
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Monteiro A, Pereira S, Bernardo S, Gómez-Cadenas A, Moutinho-Pereira J, Dinis LT. Biochemical analysis of three red grapevine varieties during three phenological periods grown under Mediterranean climate conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:855-867. [PMID: 38886872 DOI: 10.1111/plb.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
In Mediterranean regions, severe summers are becoming more common, leading to restrictions to vine productivity and yield quality, requiring sustainable practices to support this sector. We assessed the behaviour of three red grapevine varieties from the Douro Region to examine their tolerance to summer climate stress from the perspective that the less common varieties may have potential for increased use in a climate change scenario. Leaf and fruit biochemical profile, antioxidant activity and fruit colorimetric parameters were assessed at different phenological stages in Aragonez (AR), Tinto Cão (TC) and Touriga Nacional (TN) grape varieties. All three varieties exhibit significant variability in phenological timing, influenced by genetic and environmental factors. Photosynthetic pigment strategies differed among varieties. Chlorophyll content in AR was high to cope with high radiation, while TN displaying a balanced approach, and TC had lower pigment levels, with higher levels of phenolics, antioxidants, and soluble sugars, particularly during stress. The variations in berry biochemical profile highlight the distinct characteristics of the varieties. TC and TN show potential for coping with climate change, having elevated total acidity, while AR has larger and heavier berries with distinct coloration. These findings reinforce the need to study the behaviour of different varieties in each Terroir, to understand their diverse strategies to deal with summer climate stress. This will help in selecting the most suitable variety for these conditions under vineyard management in the Douro Region.
Collapse
Affiliation(s)
- A Monteiro
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - S Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - S Bernardo
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - A Gómez-Cadenas
- Departmento de Biología, Bioquímica y Ciencias Naturalesl, Universitat Jaume I, Castellón de la Plana, Spain
| | - J Moutinho-Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - L-T Dinis
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
5
|
Yokono M, Kim E, Minagawa J. The binding of light-harvesting antennae to PsaB suppresses the PSII to PSI spillover. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148995. [PMID: 37433365 DOI: 10.1016/j.bbabio.2023.148995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Affiliation(s)
- Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan.
| | - Eunchul Kim
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
6
|
Agostini A, Bína D, Carbonera D, Litvín R. Conservation of triplet-triplet energy transfer photoprotective pathways in fucoxanthin chlorophyll-binding proteins across algal lineages. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148935. [PMID: 36379269 DOI: 10.1016/j.bbabio.2022.148935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.
Collapse
Affiliation(s)
- Alessandro Agostini
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Radek Litvín
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Dey D, Tanaka R, Ito H. Structural Characterization of the Chlorophyllide a Oxygenase (CAO) Enzyme Through an In Silico Approach. J Mol Evol 2023; 91:225-235. [PMID: 36869271 DOI: 10.1007/s00239-023-10100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Chlorophyllide a oxygenase (CAO) is responsible for converting chlorophyll a to chlorophyll b in a two-step oxygenation reaction. CAO belongs to the family of Rieske-mononuclear iron oxygenases. Although the structure and reaction mechanism of other Rieske monooxygenases have been described, a member of plant Rieske non-heme iron-dependent monooxygenase has not been structurally characterized. The enzymes in this family usually form a trimeric structure and electrons are transferred between the non-heme iron site and the Rieske center of the adjoining subunits. CAO is supposed to form a similar structural arrangement. However, in Mamiellales such as Micromonas and Ostreococcus, CAO is encoded by two genes where non-heme iron site and Rieske cluster localize on the distinct polypeptides. It is not clear if they can form a similar structural organization to achieve the enzymatic activity. In this study, the tertiary structures of CAO from the model plant Arabidopsis thaliana and the Prasinophyte Micromonas pusilla were predicted by deep learning-based methods, followed by energy minimization and subsequent stereochemical quality assessment of the predicted models. Furthermore, the chlorophyll a binding cavity and the interaction of ferredoxin, which is the electron donor, on the surface of Micromonas CAO were predicted. The electron transfer pathway was predicted in Micromonas CAO and the overall structure of the CAO active site was conserved even though it forms a heterodimeric complex. The structures presented in this study will serve as a basis for understanding the reaction mechanism and regulation of the plant monooxygenase family to which CAO belongs.
Collapse
Affiliation(s)
- Debayan Dey
- Graduate School of Life Science, Hokkaido University, N10 W8, Sapporo, 060-0810, Japan
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan.
| |
Collapse
|
8
|
Ishibashi Y. Functions and applications of glycolipid-hydrolyzing microbial glycosidases. Biosci Biotechnol Biochem 2022; 86:974-984. [PMID: 35675217 DOI: 10.1093/bbb/zbac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022]
Abstract
Glycolipids are important components of cell membranes in several organisms. The major glycolipids in mammals are glycosphingolipids (GSLs), which are composed of ceramides. In mammals, GSLs are degraded stepwise from the non-reducing end of the oligosaccharides via exo-type glycosidases. However, endoglycoceramidase (EGCase), an endo-type glycosidase found in actinomycetes, is a unique enzyme that directly acts on the glycosidic linkage between oligosaccharides and ceramides to generate intact oligosaccharides and ceramides. Three molecular species of EGCase, namely EGCase I, EGCase II, and endogalactosylceramidase, have been identified based on their substrate specificity. EGCrP1 and EGCrP2, which are homologs of EGCase in pathogenic fungi, were identified as the first fungal glucosylceramide- and sterylglucoside-hydrolyzing glycosidases, respectively. These enzymes are promising targets for antifungal drugs against pathogenic fungi. This review describes the functions and properties of these microbial glycolipid-degrading enzymes, the molecular basis of their differential substrate specificity, and their applications.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
9
|
Aso M, Matsumae R, Tanaka A, Tanaka R, Takabayashi A. Unique Peripheral Antennas in the Photosystems of the Streptophyte Alga Mesostigma viride. PLANT & CELL PHYSIOLOGY 2021; 62:436-446. [PMID: 33416834 DOI: 10.1093/pcp/pcaa172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Land plants evolved from a single group of streptophyte algae. One of the key factors needed for adaptation to a land environment is the modification in the peripheral antenna systems of photosystems (PSs). Here, the PSs of Mesostigma viride, one of the earliest-branching streptophyte algae, were analyzed to gain insight into their evolution. Isoform sequencing and phylogenetic analyses of light-harvesting complexes (LHCs) revealed that M. viride possesses three algae-specific LHCs, including algae-type LHCA2, LHCA9 and LHCP, while the streptophyte-specific LHCB6 was not identified. These data suggest that the acquisition of LHCB6 and the loss of algae-type LHCs occurred after the M. viride lineage branched off from other streptophytes. Clear-native (CN)-polyacrylamide gel electrophoresis (PAGE) resolved the photosynthetic complexes, including the PSI-PSII megacomplex, PSII-LHCII, two PSI-LHCI-LHCIIs, PSI-LHCI and the LHCII trimer. Results indicated that the higher-molecular weight PSI-LHCI-LHCII likely had more LHCII than the lower-molecular weight one, a unique feature of M. viride PSs. CN-PAGE coupled with mass spectrometry strongly suggested that the LHCP was bound to PSII-LHCII, while the algae-type LHCA2 and LHCA9 were bound to PSI-LHCI, both of which are different from those in land plants. Results of the present study strongly suggest that M. viride PSs possess unique features that were inherited from a common ancestor of streptophyte and chlorophyte algae.
Collapse
Affiliation(s)
- Michiki Aso
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Renon Matsumae
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
10
|
Makita Y, Suzuki S, Fushimi K, Shimada S, Suehisa A, Hirata M, Kuriyama T, Kurihara Y, Hamasaki H, Okubo-Kurihara E, Yoshitake K, Watanabe T, Sakuta M, Gojobori T, Sakami T, Narikawa R, Yamaguchi H, Kawachi M, Matsui M. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. Nat Commun 2021; 12:3593. [PMID: 34135337 PMCID: PMC8209157 DOI: 10.1038/s41467-021-23741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.
Collapse
Affiliation(s)
- Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Aya Suehisa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Manami Hirata
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidefumi Hamasaki
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan
| | - Emiko Okubo-Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Watanabe
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Hokkaido, Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tomoko Sakami
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Minami-ise, Mie, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Yokohama City University, Kihara Institute for Biological Research, Yokohama, Japan.
| |
Collapse
|
11
|
Bag P. Light Harvesting in Fluctuating Environments: Evolution and Function of Antenna Proteins across Photosynthetic Lineage. PLANTS (BASEL, SWITZERLAND) 2021; 10:1184. [PMID: 34200788 PMCID: PMC8230411 DOI: 10.3390/plants10061184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Photosynthesis is the major natural process that can harvest and harness solar energy into chemical energy. Photosynthesis is performed by a vast number of organisms from single cellular bacteria to higher plants and to make the process efficient, all photosynthetic organisms possess a special type of pigment protein complex(es) that is (are) capable of trapping light energy, known as photosynthetic light-harvesting antennae. From an evolutionary point of view, simpler (unicellular) organisms typically have a simple antenna, whereas higher plants possess complex antenna systems. The higher complexity of the antenna systems provides efficient fine tuning of photosynthesis. This relationship between the complexity of the antenna and the increasing complexity of the organism is mainly related to the remarkable acclimation capability of complex organisms under fluctuating environmental conditions. These antenna complexes not only harvest light, but also provide photoprotection under fluctuating light conditions. In this review, the evolution, structure, and function of different antenna complexes, from single cellular organisms to higher plants, are discussed in the context of the ability to acclimate and adapt to cope under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, UPSC, Umeå University, 90736 Umeå, Sweden
| |
Collapse
|
12
|
Jung YJ, Lee HJ, Yu J, Bae S, Cho YG, Kang KK. Transcriptomic and physiological analysis of OsCAO1 knockout lines using the CRISPR/Cas9 system in rice. PLANT CELL REPORTS 2021; 40:1013-1024. [PMID: 32980909 DOI: 10.1007/s00299-020-02607-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The altered rice leaf color based on the knockout of CAO1 gene generated using CRISPR/Cas9 technology plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced senescence in rice. Rice chlorophyllide a oxygenase (OsCAO1), identified as the chlorophyll b synthesis under light condition, plays a critical role in regulating rice plant photosynthesis. In this study, the development of edited lines with pale green leaves by knockout of OsCAO1 gene known as a chlorophyll synthesis process is reported. Eighty-one genetically edited lines out of 181 T0 plants were generated through CRISPR/Cas9 system. The edited lines have short narrow flag leaves and pale green leaves compared with wild-type 'Dongjin' plants (WT). Additionally, edited lines have lower chlorophyll b and carotenoid contents both at seedling and mature stages. A transcriptome analysis identified 580 up-regulated and 206 downregulated genes in the edited lines. The differentially expressed genes (DEGs) involved in chlorophyll biosynthesis, magnesium chelatase subunit (CHLH), and glutamate-1-semialdehyde2, 1-aminomutase (GSA) metabolism decreased significantly. Meanwhile, the gel consistency (GC) levels of rice grains, chalkiness ratios and chalkiness degrees (CD) decreased in the edited lines. Thus, knockout of OsCAO1 influenced growth period, leaf development and grain quality characters of rice. Overall, the result suggests that OsCAO1 also plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced rice senescence.
Collapse
Affiliation(s)
- Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, South Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong, 17579, South Korea
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, South Korea
| | - Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, South Korea.
- Institute of Genetic Engineering, Hankyong National University, Anseong, 17579, South Korea.
| |
Collapse
|
13
|
Pakharkova N, Kazantseva A, Sharafutdinov R, Borisova I, Gavrikov V. Two-Species Forests at the Treeline of Siberian Mountains: An Ecophysiological Perspective under Climate Change. PLANTS 2021; 10:plants10040763. [PMID: 33924661 PMCID: PMC8070396 DOI: 10.3390/plants10040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
In an underexplored region of the East Sayan mountains, ecophysiological traits of two conifers, Pinus sibirica Du Tour and Abies sibírica Ledeb., have been studied. The goal was to predict which of the species co-dominating the same habitat is more vulnerable under prospective climate change. Along a transect from the treeline to the floodplain, photosynthetic pigment content and electron-transport rate (ETR) were measured in needles of neighboring trees of the species. From 570 to 1240 m a.s.l., P. sibirica does not suffer from stress factors during the growing season, while A. sibirica does. The latter is reflected in a decrease of pigment content and ETR with the increase of altitude. A stronger climate-change trend (probably to more dry and warm conditions) will likely favor the shift of P. sibirica upper in altitudes, and only under the pine shelter might the fir survive the changes.
Collapse
|
14
|
Schmidt K, Birchill AJ, Atkinson A, Brewin RJW, Clark JR, Hickman AE, Johns DG, Lohan MC, Milne A, Pardo S, Polimene L, Smyth TJ, Tarran GA, Widdicombe CE, Woodward EMS, Ussher SJ. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. GLOBAL CHANGE BIOLOGY 2020; 26:5574-5587. [PMID: 32506810 DOI: 10.1111/gcb.15161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota-large diatoms, dinoflagellates and copepods-that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light-harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition-related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.
Collapse
Affiliation(s)
- Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Antony J Birchill
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | | | - Robert J W Brewin
- Plymouth Marine Laboratory, Plymouth, UK
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | | | - Anna E Hickman
- Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, UK
| | | | - Maeve C Lohan
- Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, UK
| | - Angela Milne
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | | | | | | | | | | | | | - Simon J Ussher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
15
|
Agostini A, Büchel C, Di Valentin M, Carbonera D. A distinctive pathway for triplet-triplet energy transfer photoprotection in fucoxanthin chlorophyll-binding proteins from Cyclotella meneghiniana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148310. [PMID: 32991847 DOI: 10.1016/j.bbabio.2020.148310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
Fucoxanthin chlorophyll-binding proteins (FCPs) are the major light-harvesting complexes of diatoms. In this work, FCPs isolated from Cyclotella meneghiniana have been studied by means of optically detected magnetic resonance (ODMR) and time-resolved electron paramagnetic resonance (TR-EPR), with the aim to characterize the photoprotective mechanism based on triplet-triplet energy transfer (TTET). The spectroscopic properties of the chromophores carrying the triplet state have been interpreted on the basis of a delved analysis of the recently solved crystallographic structures of FCP. The results point toward a photoprotective role for two fucoxanthin molecules exposed to the exterior of the FCP monomers. This shows that FCP has adopted a structural strategy different from that of related light-harvesting complexes from plants and other microalgae, in which the photoprotective role is carried out by two highly conserved carotenoids in the interior of the complex.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
16
|
Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GKS, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 2020; 4:1220-1231. [PMID: 32572216 PMCID: PMC7455551 DOI: 10.1038/s41559-020-1221-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.3 Mb) between the extremely compact, small genomes of picoplanktonic Mamiellophyceae (Chlorophyta) and the larger, more complex genomes of early-diverging streptophyte algae. Reconstruction of the minimal core genome of Viridiplantae allowed identification of an ancestral toolkit of transcription factors and flagellar proteins. Adaptations of P. coloniale to its deep-water, oligotrophic environment involved expansion of light-harvesting proteins, reduction of early light-induced proteins, evolution of a distinct type of C4 photosynthesis and carbon-concentrating mechanism, synthesis of the metal-complexing metabolite picolinic acid, and vitamin B1, B7 and B12 auxotrophy. The P. coloniale genome provides first insights into the dawn of green plant evolution.
Collapse
Affiliation(s)
- Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Birger Marin
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Haoyuan Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tanja Reder
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Zehra Çebi
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany.
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
iTRAQ-Based Protein Profiling Provides Insights into the Mechanism of Light-Induced Anthocyanin Biosynthesis in Chrysanthemum ( Chrysanthemum × morifolium). Genes (Basel) 2019; 10:genes10121024. [PMID: 31835383 PMCID: PMC6947405 DOI: 10.3390/genes10121024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
The generation of chrysanthemum (Chrysanthemum × morifolium) flower color is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis, but the deep molecular mechanism remains elusive. In our previous study, a series of light-induced structural and regulatory genes involved in the anthocyanin biosynthetic pathway in the chrysanthemum were identified using RNA sequencing. In the present study, differentially expressed proteins that are in response to light with the capitulum development of the chrysanthemum 'Purple Reagan' were further identified using isobaric tags for relative and absolute quantification (iTRAQ) technique, and correlation between the proteomic and the transcriptomic libraries was analyzed. In general, 5106 raw proteins were assembled based on six proteomic libraries (three capitulum developmental stages × two light treatments). As many as 160 proteins were differentially expressed between the light and the dark libraries with 45 upregulated and 115 downregulated proteins in response to shading. Comparative analysis between the pathway enrichment and the gene expression patterns indicated that most of the proteins involved in the anthocyanin biosynthetic pathway were downregulated after shading, which was consistent with the expression patterns of corresponding encoding genes; while five light-harvesting chlorophyll a/b-binding proteins were initially downregulated after shading, and their expressions were enhanced with the capitulum development thereafter. As revealed by correlation analysis between the proteomic and the transcriptomic libraries, GDSL esterase APG might also play an important role in light signal transduction. Finally, a putative mechanism of light-induced anthocyanin biosynthesis in the chrysanthemum was proposed. This study will help us to clearly identify light-induced proteins associated with flower color in the chrysanthemum and to enrich the complex mechanism of anthocyanin biosynthesis for use in cultivar breeding.
Collapse
|
18
|
Agostini A, Meneghin E, Gewehr L, Pedron D, Palm DM, Carbonera D, Paulsen H, Jaenicke E, Collini E. How water-mediated hydrogen bonds affect chlorophyll a/b selectivity in Water-Soluble Chlorophyll Protein. Sci Rep 2019; 9:18255. [PMID: 31796824 PMCID: PMC6890793 DOI: 10.1038/s41598-019-54520-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
The Water-Soluble Chlorophyll Protein (WSCP) of Brassicaceae is a remarkably stable tetrapyrrole-binding protein that, by virtue of its simple design, is an exceptional model to investigate the interactions taking place between pigments and their protein scaffold and how they affect the photophysical properties and the functionality of the complexes. We investigated variants of WSCP from Lepidium virginicum (Lv) and Brassica oleracea (Bo), reconstituted with Chlorophyll (Chl) b, to determine the mechanisms by which the different Chl binding sites control their Chl a/b specificities. A combined Raman and crystallographic investigation has been employed, aimed to characterize in detail the hydrogen-bond network involving the formyl group of Chl b. The study revealed a variable degree of conformational freedom of the hydrogen bond networks among the WSCP variants, and an unexpected mixed presence of hydrogen-bonded and not hydrogen-bonded Chls b in the case of the L91P mutant of Lv WSCP. These findings helped to refine the description of the mechanisms underlying the different Chl a/b specificities of WSCP versions, highlighting the importance of the structural rigidity of the Chl binding site in the vicinity of the Chl b formyl group in granting a strong selectivity to binding sites.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy. .,Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany.
| | - Elena Meneghin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lucas Gewehr
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Danilo Pedron
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Daniel M Palm
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Elmar Jaenicke
- Institute of Molecular Physiology, Johannes Gutenberg-University, Jakob-Welder-Weg 26, 55128, Mainz, Germany
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
19
|
Lim H, Tanaka A, Tanaka R, Ito H. In Vitro Enzymatic Activity Assays Implicate the Existence of the Chlorophyll Cycle in Chlorophyll b-Containing Cyanobacteria. PLANT & CELL PHYSIOLOGY 2019; 60:2672-2683. [PMID: 31392311 DOI: 10.1093/pcp/pcz157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In plants, chlorophyll (Chl) a and b are interconvertible by the action of three enzymes-chlorophyllide a oxygenase, Chl b reductase (CBR) and 7-hydroxymethyl chlorophyll a reductase (HCAR). These reactions are collectively referred to as the Chl cycle. In plants, this cyclic pathway ubiquitously exists and plays essential roles in acclimation to different light conditions at various developmental stages. By contrast, only a limited number of cyanobacteria species produce Chl b, and these include Prochlorococcus, Prochloron, Prochlorothrix and Acaryochloris. In this study, we investigated a possible existence of the Chl cycle in Chl b synthesizing cyanobacteria by testing in vitro enzymatic activities of CBR and HCAR homologs from Prochlorothrix hollandica and Acaryochloris RCC1774. All of these proteins show respective CBR and HCAR activity in vitro, indicating that both cyanobacteria possess the potential to complete the Chl cycle. It is also found that CBR and HCAR orthologs are distributed only in the Chl b-containing cyanobacteria that habitat shallow seas or freshwater, where light conditions change dynamically, whereas they are not found in Prochlorococcus species that usually habitat environments with fixed lighting. Taken together, our results implicate a possibility that the Chl cycle functions for light acclimation in Chl b-containing cyanobacteria.
Collapse
Affiliation(s)
- HyunSeok Lim
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819 Japan
| |
Collapse
|
20
|
Furukawa R, Aso M, Fujita T, Akimoto S, Tanaka R, Tanaka A, Yokono M, Takabayashi A. Formation of a PSI-PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2019; 132:867-880. [PMID: 31541373 DOI: 10.1007/s10265-019-01138-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/08/2019] [Indexed: 05/10/2023]
Abstract
Mosses are one of the earliest land plants that diverged from fresh-water green algae. They are considered to have acquired a higher capacity for thermal energy dissipation to cope with dynamically changing solar irradiance by utilizing both the "algal-type" light-harvesting complex stress-related (LHCSR)-dependent and the "plant-type" PsbS-dependent mechanisms. It is hypothesized that the formation of photosystem (PS) I and II megacomplex is another mechanism to protect photosynthetic machinery from strong irradiance. Herein, we describe the analysis of the PSI-PSII megacomplex from the model moss, Physcomitrella patens, which was resolved using large-pore clear-native polyacrylamide gel electrophoresis (lpCN-PAGE). The similarity in the migration distance of the Physcomitrella PSI-PSII megacomplex to the Arabidopsis megacomplex shown during lpCN-PAGE suggested that the Physcomitrella PSI-PSII and Arabidopsis megacomplexes have similar structures. Time-resolved chlorophyll fluorescence measurements show that excitation energy was rapidly and efficiently transferred from PSII to PSI, providing evidence of an ordered association of the two photosystems. We also found that LHCSR and PsbS co-migrated with the Physcomitrella PSI-PSII megacomplex. The megacomplex showed pH-dependent chlorophyll fluorescence quenching, which may have been induced by LHCSR and/or PsbS proteins with the collaboration of zeaxanthin. We discuss the mechanism that regulates the energy distribution balance between two photosystems in Physcomitrella.
Collapse
Affiliation(s)
- Ryo Furukawa
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Michiki Aso
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Ryouichi Tanaka
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| | - Makio Yokono
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan.
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, 243-0041, Japan.
| | - Atsushi Takabayashi
- Institute of Low-Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
21
|
Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A. The PSI-PSII Megacomplex in Green Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1098-1108. [PMID: 30753722 DOI: 10.1093/pcp/pcz026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 02/04/2019] [Indexed: 05/27/2023]
Abstract
Energy dissipation is crucial for land and shallow-water plants exposed to direct sunlight. Almost all green plants dissipate excess excitation energy to protect the photosystem reaction centers, photosystem II (PSII) and photosystem I (PSI), and continue to grow under strong light. In our previous work, we reported that about half of the photosystem reaction centers form a PSI-PSII megacomplex in Arabidopsis thaliana, and that the excess energy was transferred from PSII to PSI fast. However, the physiological function and structure of the megacomplex remained unclear. Here, we suggest that high-light adaptable sun-plants accumulate the PSI-PSII megacomplex more than shade-plants. In addition, PSI of sun-plants has a deep trap to receive excitation energy, which is low-energy chlorophylls showing fluorescence maxima longer than 730 nm. This deep trap may increase the high-light tolerance of PSI by improving excitation energy dissipation. Electron micrographs suggest that one PSII dimer is directly sandwiched between two PSIs with 2-fold rotational symmetry in the basic form of the PSI-PSII megacomplex in green plants. This structure should enable fast energy transfer from PSII to PSI and allow energy in PSII to be dissipated via the deep trap in PSI.
Collapse
Affiliation(s)
- Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
- Nippon Flour Mills Co., Ltd., Innovation Center, Atsugi, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Akio Murakami
- Kobe University Research Centre for Inland Seas, Awaji, Japan
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- CREST, JST, Sapporo, Japan
| |
Collapse
|
22
|
Ueno Y, Aikawa S, Kondo A, Akimoto S. Adaptation of light-harvesting functions of unicellular green algae to different light qualities. PHOTOSYNTHESIS RESEARCH 2019; 139:145-154. [PMID: 29808364 DOI: 10.1007/s11120-018-0523-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Shimpei Aikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
23
|
Chen Y, Shimoda Y, Yokono M, Ito H, Tanaka A. Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1022-1031. [PMID: 30471153 DOI: 10.1111/tpj.14174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The STAY-GREEN (SGR) gene encodes Mg-dechelatase which catalyzes the conversion of chlorophyll (Chl) a to pheophytin (Pheo) a. This reaction is the first and most important regulatory step in the Chl degradation pathway. Conversely, Pheo a is an indispensable molecule in photosystem (PS) II, suggesting the involvement of SGR in the formation of PSII. To investigate the physiological functions of SGR, we isolated Chlamydomonas sgr mutants by screening an insertion-mutant library. The sgr mutants had reduced maximum quantum efficiency of PSII (Fv /Fm ) and reduced Pheo a levels. These phenotypes were complemented by the introduction of the Chlamydomonas SGR gene. Blue Native polyacrylamide gel electrophoresis and immunoblotting analysis showed that although PSII levels were reduced in the sgr mutants, PSI and light-harvesting Chl a/b complex levels were unaffected. Under nitrogen starvation conditions, Chl degradation proceeded in the sgr mutants as in the wild type, indicating that ChlamydomonasSGR is not required for Chl degradation and primarily contributes to the formation of PSII. In contrast, in the Arabidopsis sgr triple mutant (sgr1 sgr2 sgrL), which completely lacks SGR activity, PSII was synthesized normally. These results suggest that the Arabidopsis SGR participates in Chl degradation while the ChlamydomonasSGR participates in PSII formation despite having the same catalytic property.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Yousuke Shimoda
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| |
Collapse
|
24
|
Effect of metformin exposure on growth and photosynthetic performance in the unicellular freshwater chlorophyte, Chlorella vulgaris. PLoS One 2018; 13:e0207041. [PMID: 30419044 PMCID: PMC6231646 DOI: 10.1371/journal.pone.0207041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023] Open
Abstract
Many pharmaceuticals have negative effects on biota when released into the environment. For example, recent work has shown that the commonly prescribed antidiabetic drug, metformin (N,N-dimethylbiguanide), has endocrine disrupting effects on fish. However, effects of metformin on aquatic primary producers are poorly known. We exposed cultured isolates of a freshwater chlorophyte, Chlorella vulgaris, to a range of metformin concentrations (0–767.9 mg L-1) to test the hypothesis that exposure negatively affects photosynthesis and growth. A cessation of growth, increase in non-photochemical quenching (NPQ, NPQmax), and reduced electron transport rate (ETR) were observed 24 h after exposure to a metformin concentration of 767.8 mg L-1 (4.6 mM). By 48 h, photosynthetic efficiency of photosystem II (Fv/Fm), α, the initial slope of the ETR-irradiance curve, and Ek (minimum irradiance required to saturate photosynthesis) were reduced. At a lower concentration (76.8 mg L-1), negative effects on photosynthesis (increase in NPQ, decrease in ETR) were delayed, occurring between 72 and 96 h. No negative effects on photosynthesis were observed at an exposure concentration of 1.5 mg L-1. It is likely that metformin impairs photosynthesis either through downstream effects from inhibition of complex I of the electron transport chain or via activation of the enzyme, SnRK1 (sucrose non-fermenting-related kinase 1), which acts as a cellular energy regulator in plants and algae and is an ortholog of the mammalian target of metformin, AMPK (5' adenosine monophosphate-activated protein kinase).
Collapse
|
25
|
Kume A, Akitsu T, Nasahara KN. Why is chlorophyll b only used in light-harvesting systems? JOURNAL OF PLANT RESEARCH 2018; 131:961-972. [PMID: 29992395 PMCID: PMC6459968 DOI: 10.1007/s10265-018-1052-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 05/09/2023]
Abstract
Chlorophylls (Chl) are important pigments in plants that are used to absorb photons and release electrons. There are several types of Chls but terrestrial plants only possess two of these: Chls a and b. The two pigments form light-harvesting Chl a/b-binding protein complexes (LHC), which absorb most of the light. The peak wavelengths of the absorption spectra of Chls a and b differ by c. 20 nm, and the ratio between them (the a/b ratio) is an important determinant of the light absorption efficiency of photosynthesis (i.e., the antenna size). Here, we investigated why Chl b is used in LHCs rather than other light-absorbing pigments that can be used for photosynthesis by considering the solar radiation spectrum under field conditions. We found that direct and diffuse solar radiation (PARdir and PARdiff, respectively) have different spectral distributions, showing maximum spectral photon flux densities (SPFD) at c. 680 and 460 nm, respectively, during the daytime. The spectral absorbance spectra of Chls a and b functioned complementary to each other, and the absorbance peaks of Chl b were nested within those of Chl a. The absorption peak in the short wavelength region of Chl b in the proteinaceous environment occurred at c. 460 nm, making it suitable for absorbing the PARdiff, but not suitable for avoiding the high spectral irradiance (SIR) waveband of PARdir. In contrast, Chl a effectively avoided the high SPFD and/or high SIR waveband. The absorption spectra of photosynthetic complexes were negatively correlated with SPFD spectra, but LHCs with low a/b ratios were more positively correlated with SIR spectra. These findings indicate that the spectra of the photosynthetic pigments and constructed photosystems and antenna proteins significantly align with the terrestrial solar spectra to allow the safe and efficient use of solar radiation.
Collapse
Affiliation(s)
- Atsushi Kume
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Tomoko Akitsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Kenlo Nishida Nasahara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| |
Collapse
|
26
|
Esteban R, García-Plazaola JI, Hernández A, Fernández-Marín B. On the recalcitrant use of Arnon's method for chlorophyll determination. THE NEW PHYTOLOGIST 2018; 217:474-476. [PMID: 29193121 DOI: 10.1111/nph.14932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Raquel Esteban
- Plant Biology and Ecology Department, University of the Basque Country (UPV/EHU), c/Sarriena s/n, Apdo 644, 48080, Bilbao, Spain
| | - Jose I García-Plazaola
- Plant Biology and Ecology Department, University of the Basque Country (UPV/EHU), c/Sarriena s/n, Apdo 644, 48080, Bilbao, Spain
| | - Antonio Hernández
- Plant Biology and Ecology Department, University of the Basque Country (UPV/EHU), c/Sarriena s/n, Apdo 644, 48080, Bilbao, Spain
| | - Beatriz Fernández-Marín
- Plant Biology and Ecology Department, University of the Basque Country (UPV/EHU), c/Sarriena s/n, Apdo 644, 48080, Bilbao, Spain
| |
Collapse
|
27
|
Tyutereva EV, Evkaikina AI, Ivanova AN, Voitsekhovskaja OV. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants. PHOTOSYNTHESIS RESEARCH 2017; 133:357-370. [PMID: 28382592 DOI: 10.1007/s11120-017-0376-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Anastasiia I Evkaikina
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Alexandra N Ivanova
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia.
| |
Collapse
|
28
|
Complete Chloroplast Genome Sequence of the Early Diverging Green Alga Palmophyllum crassum. GENOME ANNOUNCEMENTS 2017; 5:5/10/e01745-16. [PMID: 28280029 PMCID: PMC5347249 DOI: 10.1128/genomea.01745-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Palmophyllum crassum is a little-known green alga, with a unique evolutionary position and distinctive photosynthetic features. Here, we present the complete chloroplast genome sequence of Palmophyllum crassum.
Collapse
|
29
|
Takabayashi A, Takabayashi S, Takahashi K, Watanabe M, Uchida H, Murakami A, Fujita T, Ikeuchi M, Tanaka A. PCoM-DB Update: A Protein Co-Migration Database for Photosynthetic Organisms. PLANT & CELL PHYSIOLOGY 2017; 58:e10. [PMID: 28011869 DOI: 10.1093/pcp/pcw219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 05/29/2023]
Abstract
The identification of protein complexes is important for the understanding of protein structure and function and the regulation of cellular processes. We used blue-native PAGE and tandem mass spectrometry to identify protein complexes systematically, and built a web database, the protein co-migration database (PCoM-DB, http://pcomdb.lowtem.hokudai.ac.jp/proteins/top), to provide prediction tools for protein complexes. PCoM-DB provides migration profiles for any given protein of interest, and allows users to compare them with migration profiles of other proteins, showing the oligomeric states of proteins and thus identifying potential interaction partners. The initial version of PCoM-DB (launched in January 2013) included protein complex data for Synechocystis whole cells and Arabidopsis thaliana thylakoid membranes. Here we report PCoM-DB version 2.0, which includes new data sets and analytical tools. Additional data are included from whole cells of the pelagic marine picocyanobacterium Prochlorococcus marinus, the thermophilic cyanobacterium Thermosynechococcus elongatus, the unicellular green alga Chlamydomonas reinhardtii and the bryophyte Physcomitrella patens. The Arabidopsis protein data now include data for intact mitochondria, intact chloroplasts, chloroplast stroma and chloroplast envelopes. The new tools comprise a multiple-protein search form and a heat map viewer for protein migration profiles. Users can compare migration profiles of a protein of interest among different organelles or compare migration profiles among different proteins within the same sample. For Arabidopsis proteins, users can compare migration profiles of a protein of interest with putative homologous proteins from non-Arabidopsis organisms. The updated PCoM-DB will help researchers find novel protein complexes and estimate their evolutionary changes in the green lineage.
Collapse
Affiliation(s)
- Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
- CREST, JST, Kita-ku, Sapporo, Japan
| | - Saeka Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Public Health, Graduate School of Medicine Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kaori Takahashi
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mai Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroko Uchida
- Kobe University Research Center for Inland Seas, Awaji, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, Awaji, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo 060-0810, Japan Tokyo, Tokyo, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo, Japan
- CREST, JST, Kita-ku, Sapporo, Japan
| |
Collapse
|