1
|
Stage-specific protein regulation during somatic embryo development of Carica papaya L. 'Golden'. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140561. [PMID: 33161157 DOI: 10.1016/j.bbapap.2020.140561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
Somatic embryogenesis is an important biotechnological technique for large-scale propagation of elite genotypes. Identifying stage-specific compounds associated with somatic embryo development can help elucidate the ontogenesis of Carica papaya L. somatic embryos and improve tissue culture protocols. To identify the stage-specific proteins that are present during the differentiation of C. papaya somatic embryos, proteomic analyses of embryos at the globular, heart, torpedo and cotyledonary developmental stages were performed. Mass spectrometry data have been deposited in the ProteomeXchange with the dataset identifier PXD021107. Comparative proteomic analyses revealed a total of 801 proteins, with 392 classified as differentially accumulated proteins in at least one of the developmental stages. The globular-staged presented a higher number of unique proteins (16), and 7 were isoforms of 60S ribosomal proteins, suggesting high translational activity at the beginning of somatic embryogenesis. Proteins related to mitochondrial metabolism accumulated to a high degree at the early developmental stages and then decreased with increasing development, and they contributed to cell homeostasis in early somatic embryos. A progressive increase in the accumulation of vicilin, late embryogenesis abundant proteins and chloroplastic proteins that lead to somatic embryo maturation was also observed. The differential accumulation of acetylornithine deacetylase and S-adenosylmethionine synthase 2 proteins was correlated with increases in putrescine and spermidine contents, which suggests that both polyamines should be tested to determine whether they increase the conversion rates of globular- to cotyledonary-staged somatic embryos. Taken together, the results showed that somatic embryo development in C. papaya is regulated by the differential accumulation of proteins, with ribosomal and mitochondrial proteins more abundant during the early somatic embryo stages and seed maturation proteins more abundant during the late stages.
Collapse
|
2
|
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. Molecular Mechanisms of Plant Regeneration. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:377-406. [PMID: 30786238 DOI: 10.1146/annurev-arplant-050718-100434] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants reprogram somatic cells following injury and regenerate new tissues and organs. Upon perception of inductive cues, somatic cells often dedifferentiate, proliferate, and acquire new fates to repair damaged tissues or develop new organs from wound sites. Wound stress activates transcriptional cascades to promote cell fate reprogramming and initiate new developmental programs. Wounding also modulates endogenous hormonal responses by triggering their biosynthesis and/or directional transport. Auxin and cytokinin play pivotal roles in determining cell fates in regenerating tissues and organs. Exogenous application of these plant hormones enhances regenerative responses in vitro by facilitating the activation of specific developmental programs. Many reprogramming regulators are epigenetically silenced during normal development but are activated by wound stress and/or hormonal cues.
Collapse
Affiliation(s)
- Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - Yuki Sakamoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
- Department of Biological Sciences, University of Tokyo, Tokyo 119-0033, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - Duncan Coleman
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
- Department of Biological Sciences, University of Tokyo, Tokyo 119-0033, Japan
| | - Bart Rymen
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; , , , , , ,
- Department of Biological Sciences, University of Tokyo, Tokyo 119-0033, Japan
| |
Collapse
|
3
|
Wang H, Yang Y, Xu J, Kong D, Li Y. iTRAQ-based comparative proteomic analysis of differentially expressed proteins in Rhodococcus sp. BAP-1 induced by fluoranthene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:282-291. [PMID: 30458394 DOI: 10.1016/j.ecoenv.2018.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
To reveal the molecular mechanism at the level of regulation of proteins in Rhodococcus sp. BAP-1 induced by fluoranthene comparative proteomic analysis was performed on proteins extracted from fluoranthene-exposed cells on 1 d, 3 d, 6 d and 8 d compared with control cells using isobaric tags for relative and absolute quantization (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. As a result, we detected a total of 897 significantly differentially expressed proteins, including 30 shared proteins in four comparison clusters. We were able to short-list 190, 329, 101 and 90 proteins that were over-represented, and 394, 234, 65 and 49 under-represented proteins, in 1d/control, 3d/control, 6d/control and 8d/control comparisons, respectively. Functional analysis relied on Clusters of Orthologous Groups (COG), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that fluoranthene significantly altered the expression of proteins involved in metabolic and biosynthesis processes. Furthermore, BAP-1 up-regulates aldehyde dehydrogenase, cytochrome c oxidase, and oligopeptide transport ATP-binding protein, while down-regulates several other proteins in order to adapt to fluoranthene exposure. These findings provide important clues to reveal fluoranthene degradation mechanism in BAP-1 and promote its bioremediation applications.
Collapse
Affiliation(s)
- Hongqi Wang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yan Yang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Jie Xu
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Dekang Kong
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi Li
- College of Environment and Resource, Guangxi Normal University, 541004 Guilin, Guangxi, China.
| |
Collapse
|
4
|
Toplak M, Wiedemann G, Ulićević J, Daniel B, Hoernstein SNW, Kothe J, Niederhauser J, Reski R, Winkler A, Macheroux P. The single berberine bridge enzyme homolog of Physcomitrella patens is a cellobiose oxidase. FEBS J 2018; 285:1923-1943. [PMID: 29633551 PMCID: PMC6001459 DOI: 10.1111/febs.14458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
The berberine bridge enzyme from the California poppy Eschscholzia californica (EcBBE) catalyzes the oxidative cyclization of (S)‐reticuline to (S)‐scoulerine, that is, the formation of the berberine bridge in the biosynthesis of benzylisoquinoline alkaloids. Interestingly, a large number of BBE‐like genes have been identified in plants that lack alkaloid biosynthesis. This finding raised the question of the primordial role of BBE in the plant kingdom, which prompted us to investigate the closest relative of EcBBE in Physcomitrella patens (PpBBE1), the most basal plant harboring a BBE‐like gene. Here, we report the biochemical, structural, and in vivo characterization of PpBBE1. Our studies revealed that PpBBE1 is structurally and biochemically very similar to EcBBE. In contrast to EcBBE, we found that PpBBE1 catalyzes the oxidation of the disaccharide cellobiose to the corresponding lactone, that is, PpBBE1 is a cellobiose oxidase. The enzymatic reaction mechanism was characterized by a structure‐guided mutagenesis approach that enabled us to assign a catalytic role to amino acid residues in the active site of PpBBE1. In vivo experiments revealed the highest level of PpBBE1 expression in chloronema, the earliest stage of the plant's life cycle, where carbon metabolism is strongly upregulated. It was also shown that the enzyme is secreted to the extracellular space, where it may be involved in later steps of cellulose degradation, thereby allowing the moss to make use of cellulose for energy production. Overall, our results suggest that the primordial role of BBE‐like enzymes in plants revolved around primary metabolic reactions in carbohydrate utilization. Database Structural data are available in the PDB under the accession numbers 6EO4 and 6EO5.
Collapse
Affiliation(s)
- Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
| | - Jelena Ulićević
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Bastian Daniel
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - Jennifer Kothe
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
| | | | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
5
|
Vergara Z, Gutierrez C. Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biol 2017; 18:96. [PMID: 28535770 PMCID: PMC5440935 DOI: 10.1186/s13059-017-1236-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chromatin is not a uniform macromolecular entity; it contains different domains characterized by complex signatures of DNA and histone modifications. Such domains are organized both at a linear scale along the genome and spatially within the nucleus. We discuss recent discoveries regarding mechanisms that establish boundaries between chromatin states and nuclear territories. Chromatin organization is crucial for genome replication, transcriptional silencing, and DNA repair and recombination. The replication machinery is relevant for the maintenance of chromatin states, influencing DNA replication origin specification and accessibility. Current studies reinforce the idea of intimate crosstalk between chromatin features and processes involving DNA transactions.
Collapse
Affiliation(s)
- Zaida Vergara
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|