1
|
Busch FA, Ainsworth EA, Amtmann A, Cavanagh AP, Driever SM, Ferguson JN, Kromdijk J, Lawson T, Leakey ADB, Matthews JSA, Meacham-Hensold K, Vath RL, Vialet-Chabrand S, Walker BJ, Papanatsiou M. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. PLANT, CELL & ENVIRONMENT 2024; 47:3344-3364. [PMID: 38321805 DOI: 10.1111/pce.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.
Collapse
Affiliation(s)
- Florian A Busch
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Research School of Biology, The Australian National University, Canberra, Australian Captial Territory, Australia
| | | | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Amanda P Cavanagh
- School of Life Sciences, University of Essex, Colchester, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - John N Ferguson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Andrew D B Leakey
- Departments of Plant Biology and Crop Sciences, University of Illinois Urbana Champaign, Urbana, Illinois, USA
| | | | | | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- LI-COR Environmental, Lincoln, Nebraska, USA
| | - Silvere Vialet-Chabrand
- Department of Plant Sciences, Horticulture and Product Physiology, Wageningen, The Netherlands
| | - Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Maria Papanatsiou
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Leverett A, Kromdijk J. The long and tortuous path towards improving photosynthesis by engineering elevated mesophyll conductance. PLANT, CELL & ENVIRONMENT 2024; 47:3411-3427. [PMID: 38804598 DOI: 10.1111/pce.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The growing demand for global food production is likely to be a defining issue facing humanity over the next 50 years. To tackle this challenge, there is a desire to bioengineer crops with higher photosynthetic efficiencies, to increase yields. Recently, there has been a growing interest in engineering leaves with higher mesophyll conductance (gm), which would allow CO2 to move more efficiently from the substomatal cavities to the chloroplast stroma. However, if crop yield gains are to be realised through this approach, it is essential that the methodological limitations associated with estimating gm are fully appreciated. In this review, we summarise these limitations, and outline the uncertainties and assumptions that can affect the final estimation of gm. Furthermore, we critically assess the predicted quantitative effect that elevating gm will have on assimilation rates in crop species. We highlight the need for more theoretical modelling to determine whether altering gm is truly a viable route to improve crop performance. Finally, we offer suggestions to guide future research on gm, which will help mitigate the uncertainty inherently associated with estimating this parameter.
Collapse
Affiliation(s)
- Alistair Leverett
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Lawson T, Vialet-Chabrand S. Imaging Spatial and Temporal Variation in Photosynthesis Using Chlorophyll Fluorescence. Methods Mol Biol 2024; 2790:293-316. [PMID: 38649577 DOI: 10.1007/978-1-0716-3790-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chlorophyll fluorescence imaging provides a noninvasive rapid screen to assess the physiological status of a number of leaves or plants simultaneously. Although there are no standard protocols for chlorophyll fluorescence imaging, here we provide an example of routines for some of the typical measurements.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK.
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Abstract
When microscopy meets modelling the exciting concept of a 'virtual leaf' is born. The goal of a 'virtual leaf' is to capture complex physiology in a virtual environment, resulting in the capacity to run experiments computationally. One example of a 'virtual leaf' application is capturing 3D anatomy from volume microscopy data and estimating where water evaporates in the leaf and the proportions of apoplastic, symplastic and gas phase water transport. The same 3D anatomy could then be used to improve established 3D reaction-diffusion models, providing a better understanding of the transport of CO2 across the stomata, through the airspace and across the mesophyll cell wall. This viewpoint discusses recent progress that has been made in transitioning from a bulk leaf approach to a 3D understanding of leaf physiology, in particular, the movement of CO2 and H2O within the leaf.
Collapse
|
5
|
Perera-Castro AV, Flexas J. The ratio of electron transport to assimilation (ETR/A N): underutilized but essential for assessing both equipment's proper performance and plant status. PLANTA 2023; 257:29. [PMID: 36592261 DOI: 10.1007/s00425-022-04063-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
ETR/AN ratios should be in the range 7.5-10.5 for non-stressed C3 plants. Ratios extremely out of this range can be reflecting both uncontrolled plant status and technical mistakes during measurements. We urge users to explicitly refer to this ratio in future studies as a proof for internal data quality control. For the last few decades, the use of infra-red gas-exchange analysers (IRGAs) coupled with chlorophyll fluorometers that allow for measurements of net CO2 assimilation rate and estimates of electron transport rate over the same leaf area has been popularized. The evaluation of data from both instruments in an integrative manner can result in additional valuable information, such as the estimation of the light respiration, mesophyll conductance and the partitioning of the flux of electrons into carboxylation, oxygenation and alternative processes, among others. In this review, an additional and more 'straight' use of the combination of chlorophyll fluorescence and gas exchange-derived parameters is presented, namely using the direct ratio between two fully independently estimated parameters, electron transport rate (ETR)-determined by the fluorometer-and net CO2 assimilation rate (AN)-determined by the IRGA, i.e., the ETR/AN ratio, as a tool for fast detection of incongruencies in the data and potential technical problems associated with them, while checking for the study plant's status. To illustrate this application, a compilation of 75 studies that reported both parameters for a total of 178 species under varying physiological status is presented. Values of ETR/AN between 7.5 and 10.5 were most frequently found for non-stressed C3 plants. C4 species showed an average ETR/AN ratio of 4.7. The observed ratios were larger for species with high leaf mass per area and for plants subjected to stressful factors like drought or nutritional deficit. Knowing the expected ETR/AN ratio projects this ratio as a routinary and rapid check point for guaranteeing both the correct performance of equipment and the optimal/stress status of studied plants. All known errors associated with the under- or overestimation of ETR or AN are summarized in a checklist that aims to be routinely used by any IRGA/fluorometer user to strength the validity of their data.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, S/N, 38200, La Laguna, Canary Islands, Spain.
| | - Jaume Flexas
- Department of Biology, Agro-Environmental and Water Economics Institute (INAGEA), Universitat de LES Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| |
Collapse
|
6
|
Zou QQ, Liu DH, Sang M, Jiang CD. Sunflower Leaf Structure Affects Chlorophyll a Fluorescence Induction Kinetics In Vivo. Int J Mol Sci 2022; 23:ijms232314996. [PMID: 36499324 PMCID: PMC9738131 DOI: 10.3390/ijms232314996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Chlorophyll a fluorescence induction kinetics (CFI) is an important tool that reflects the photosynthetic function of leaves, but it remains unclear whether it is affected by leaf structure. Therefore, in this study, the leaf structure and CFI curves of sunflower and sorghum seedlings were analyzed. Results revealed that there was a significant difference between the structures of palisade and spongy tissues in sunflower leaves. Their CFI curves, measured on both the adaxial and abaxial sides, also differed significantly. However, the differences in the leaf structures and CFI curves between both sides of sorghum leaves were not significant. Further analysis revealed that the differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves almost disappeared due to reduced incident light scattering and refraction in the leaf tissues; more importantly, changes in the CFI curves of the abaxial side were greater than the adaxial side. Compared to leaves grown under full sunlight, weak light led to decreased differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves; of these, changes in the CFI curves and palisade tissue structure on the adaxial side were more obvious than on the abaxial side. Therefore, it appears that large differences in sunflower leaf structures may affect the shape of CFI curves. These findings lay a foundation for enhancing our understanding of CFI from a new perspective.
Collapse
Affiliation(s)
- Qing-Qing Zou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Huan Liu
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Chuang-Dao Jiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Correspondence:
| |
Collapse
|
7
|
Ebinezer LB, Battisti I, Sharma N, Ravazzolo L, Ravi L, Trentin AR, Barion G, Panozzo A, Dall'Acqua S, Vamerali T, Quaggiotti S, Arrigoni G, Masi A. Perfluorinated alkyl substances affect the growth, physiology and root proteome of hydroponically grown maize plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129512. [PMID: 35999737 DOI: 10.1016/j.jhazmat.2022.129512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Poly- and perfluorinated alkyl substances (PFAS) are a group of persistent organic pollutants causing serious global concern. Plants can accumulate PFAS but their effect on plant physiology, especially at the molecular level is not very well understood. Hence, we used hydroponically-grown maize plants treated with a combination of eleven different PFAS (each at 100 μg L-1) to investigate their bioaccumulation and effects on the growth, physiology and their impact on the root proteome. A dose-dependent decrease in root growth parameters was evidenced with a significant reduction in the relative growth rate, fresh weight of leaves and roots and altered photosynthetic parameters in PFAS-treated plants. Higher concentration of shorter PFAS (C < 8) was detected in the leaves, while long-chain PFAS (C ≥ 8) were more retained in roots. From the root proteome analysis, we identified 75 differentially abundant proteins, mostly involved in cellular metabolic and biosynthetic processes, translation and cytoskeletal reorganization. Validating the altered protein abundance using quantitative real-time PCR, the results were further substantiated using amino acid and fatty acid profiling, thus, providing first insight into the altered metabolic state of plants exposed to PFAS from a proteomics perspective.
Collapse
Affiliation(s)
- Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy
| | - Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Lokesh Ravi
- Department of Botany, St. Joseph's College (Autonomous), Bengaluru, India
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Giuseppe Barion
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 PD, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
8
|
Mao Q, Hu B, Agathokleous E, Wang L, Koike T, Ma M, Rennenberg H. Biochar application improves karstic lime soil physicochemical properties and enzymes activity and enhances sweet tea seedlings physiological performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154815. [PMID: 35341840 DOI: 10.1016/j.scitotenv.2022.154815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Karst lime soil, commonly found in rocky desert ecosystems of Southwest China, exhibits high pH, poor water retention, and intense erosion. To prevent further soil erosion and soil losses from these ecosystems, stabilization measures based on improved green infrastructure are needed. The present study aimed at elucidating the performance of sweet tea (Lithocarpus polystachyus) seedlings grown on this soil type upon biochar application. Biochar was classified into different particle sizes, viz. 0.25-0.5 mm (medium), 0.5-1 mm (coarse), 1-2 mm (gravel), and their mixture, and added at the concentrations of 1, 2, or 5% soil mass. The pH, moisture, and porosity of soil increased upon biochar application compared to control; however, soil bulk density significantly decreased. The activity of soil phosphatase was increased by biochar particle size. Biochar particle size and concentration significantly enhanced the soil organic carbon content, but they differently affected total and plant-available nutrients in the soil. Light-saturated photosynthesis was positively affected, while stomatal conductance, leaf transpiration, and the intercellular CO2 concentrations of sweet tea leaves were negatively affected by biochar particle size and/or concentration compared to control. Leaf chlorophyll and soluble protein contents were increased by biochar application. From these results, we conclude that biochar can improve soil properties and the performance of sweet tea seedlings grown on Karst lime soil. We suggest its application at a concentration of 2% soil mass for keeping a high physiological performance of sweet tea seedlings in this environment. The selection of the ideal particle size is context-specific and depends on the target outcome.
Collapse
Affiliation(s)
- Qiaozhi Mao
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Bin Hu
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Lina Wang
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Takayoshi Koike
- Urban Ecology of the Research Center for Eco-Environmental Science, Beijing 100085, China; Research Faculty of Agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Ming Ma
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Zuo G, Aiken RM, Feng N, Zheng D, Zhao H, Avenson TJ, Lin X. Fresh perspectives on an established technique: Pulsed amplitude modulation chlorophyll a fluorescence. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:41-59. [PMID: 37284008 PMCID: PMC10168060 DOI: 10.1002/pei3.10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/08/2023]
Abstract
Pulsed amplitude modulation (PAM) chlorophyll a fluorescence provides information about photosynthetic energy transduction. When reliably measured, chlorophyll a fluorescence provides detailed information about critical in vivo photosynthetic processes. Such information has recently provided novel and critical insights into how the yield potential of crops can be improved and it is being used to understand remotely sensed fluorescence, which is termed solar-induced fluorescence and will be solely measured by a satellite scheduled to be launched this year. While PAM chlorophyll a fluorometers measure fluorescence intensity per se, herein we articulate the axiomatic criteria by which instrumentally detected intensities can be assumed to assess fluorescence yield, a phenomenon quite different than fluorescence intensity and one that provides critical insight about how solar energy is variably partitioned into the biosphere. An integrated mathematical, phenomenological, and practical discussion of many useful chlorophyll a fluorescence parameters is presented. We draw attention to, and provide examples of, potential uncertainties that can result from incorrect methodological practices and potentially problematic instrumental design features. Fundamentals of fluorescence measurements are discussed, including the major assumptions underlying the signals and the methodological caveats about taking measurements during both dark- and light-adapted conditions. Key fluorescence parameters are discussed in the context of recent applications under environmental stress. Nuanced information that can be gleaned from intra-comparisons of fluorescence-derived parameters and intercomparisons of fluorescence-derived parameters with those based on other techniques is elucidated.
Collapse
Affiliation(s)
- Guanqiang Zuo
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | - Robert M. Aiken
- Department of AgronomyKansas State UniversityManhattanKansasUSA
- Northwest Research‐Extension CenterKansas State UniversityColbyKansasUSA
| | - Naijie Feng
- College of Coastal Agricultural ScienceGuangdong Ocean UniversityZhanjiangChina
- Shenzhen Research Institute of Guangdong Ocean UniversityShenzhenChina
| | - Dianfeng Zheng
- College of Coastal Agricultural ScienceGuangdong Ocean UniversityZhanjiangChina
- Shenzhen Research Institute of Guangdong Ocean UniversityShenzhenChina
| | - Haidong Zhao
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | | | - Xiaomao Lin
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
10
|
Mao Q, Tang L, Ji W, Rennenberg H, Hu B, Ma M. Elevated CO 2 and soil mercury stress affect photosynthetic characteristics and mercury accumulation of rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111605. [PMID: 33396125 DOI: 10.1016/j.ecoenv.2020.111605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
This is a novel study about responses of leaf photosynthetic traits and plant mercury (Hg) accumulation of rice grown in Hg polluted soils to elevated CO2 (ECO2). The aim of this study was to provide basic information on the acclimation capacity of photosynthesis and Hg accumulation in rice grown in Hg polluted soil under ECO2 at day, night, and full day. For this purpose, we analyzed leaf photosynthetic traits of rice at flowering and grain filling. In addition, chlorophyll content, soluble sugar and Malondialdehyde (MDA) of rice leaves were measured at flowering. Seed yield, ear number, grain number per ear, 1000-grain weight, total mercury (THg) and methylmercury (MeHg) contents were determined after harvest. Our results showed that Hg polluted soil and ECO2 had no significant effect on leaf chlorophyll content and leaf mass per area (LMA) in rice. The contents of soluble sugar and MDA in leaves increased significantly under ECO2. Mercury polluted soil treatment significantly reduced the light saturated CO2 assimilation rate (Asat) of rice leaves only at flowering, but not at grain filling. Night ECO2 greatly improved rice leaf water use efficiency (WUE). ECO2 greatly increased seed yield and ear number. In addition, ECO2 did not affect THg accumulation in rice organs, but ECO2 and Hg treatment had a significant interaction on MeHg in seeds, husks and roots.
Collapse
Affiliation(s)
- Qiaozhi Mao
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Lingzhi Tang
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Wenwen Ji
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Heinz Rennenberg
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China
| | - Bin Hu
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| | - Ming Ma
- Center of Molecular Ecological Physiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, PR China.
| |
Collapse
|
11
|
Ranjbaran M, Solhtalab M, Datta AK. Mechanistic modeling of light-induced chemotactic infiltration of bacteria into leaf stomata. PLoS Comput Biol 2020; 16:e1007841. [PMID: 32384085 PMCID: PMC7209104 DOI: 10.1371/journal.pcbi.1007841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/02/2020] [Indexed: 12/04/2022] Open
Abstract
Light is one of the factors that can play a role in bacterial infiltration into leafy greens by keeping stomata open and providing photosynthetic products for microorganisms. We model chemotactic transport of bacteria within a leaf tissue in response to photosynthesis occurring within plant mesophyll. The model includes transport of carbon dioxide, oxygen, bicarbonate, sucrose/glucose, bacteria, and autoinducer-2 within the leaf tissue. Biological processes of carbon fixation in chloroplasts, and respiration in mitochondria of the plant cells, as well as motility, chemotaxis, nutrient consumption and communication in the bacterial community are considered. We show that presence of light is enough to boost bacterial chemotaxis through the stomatal opening and toward photosynthetic products within the leaf tissue. Bacterial chemotactic ability is a major player in infiltration, and plant stomatal defense in closing the stomata as a perception of microbe-associated molecular patterns is an effective way to inhibit the infiltration. Exposure to light can trigger photosynthesis in plant leaves, such as leafy-greens, and increase concentrations of photosynthetic products, such as glucose, within the leaf tissue. Bacteria existing at the leaf surfaces may respond to the available photosynthetic products and migrate into the leaf tissue by chemotaxis toward nutrient concentration gradients. Once the bacteria are inside the leaf tissue, they cannot be washed away, presenting a risk to the consumer. Here, a physics-based model for this light-driven infiltration is presented. This mechanistic model couples transport of bacteria and nutrients, and photosynthesis within a leaf tissue around one stomatal opening. The model shows that the ability of bacteria to transport via chemotaxis is a major factor in infiltration. A moderate intensity light is sufficient to promote chemotactic infiltration of bacteria on a leaf surface into its interior. Infiltration is enhanced in the presence of blue, white and red lights, and for a larger stomatal aperture.
Collapse
Affiliation(s)
- Mohsen Ranjbaran
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Mina Solhtalab
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States of America
| | - Ashim K. Datta
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Sharma N, Barion G, Shrestha I, Ebinezer LB, Trentin AR, Vamerali T, Mezzalira G, Masi A, Ghisi R. Accumulation and effects of perfluoroalkyl substances in three hydroponically grown Salix L. species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110150. [PMID: 31951898 DOI: 10.1016/j.ecoenv.2019.110150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
The potential of young rooted cuttings of three Salix L. species plants to accumulate a mixture of eleven perfluoroalkyl substances (PFASs), in particular, perfluoroalkyl acids (PFAAs), from the nutrient solution and their effects on plant growth and photosynthesis were assessed in an 8-day experiment. The growth rate of the willow plants exposed to the PFAA mixture was not much affected except for S. triandra. Regarding photosynthesis, the gas exchange parameters were affected more than those related to chlorophyll fluorescence, with significant increase of the net CO2 assimilation rate and parameters related to stomatal conductance. A decreasing trend in the PFAA concentration in leaves with increasing carbon chain length was observed, whereas long-chain PFAAs showed higher concentrations in roots. Accordingly, the foliage to root concentration factor highlighted that PFAAs with shorter carbon chain length (C ≤ 7) translocated and accumulated relatively more in leaves compared to roots. Removal efficiency of individual PFAAs for leaves and roots were comparatively higher with S. eleagnos and S. purpurea than S. triandra, with mean removal values at the whole plant level ranging around 10% of the amount initially spiked, suggesting their potential for phytoremediation of PFASs.
Collapse
Affiliation(s)
- Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
| | - Giuseppe Barion
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
| | - Inisa Shrestha
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy.
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
| | | | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
| | - Rossella Ghisi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
| |
Collapse
|
13
|
McClain AM, Sharkey TD. Building a better equation for electron transport estimated from Chl fluorescence: accounting for nonphotosynthetic light absorption. THE NEW PHYTOLOGIST 2020; 225:604-608. [PMID: 31605374 PMCID: PMC7660523 DOI: 10.1111/nph.16255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/03/2019] [Indexed: 06/01/2023]
Affiliation(s)
- Alan M. McClain
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Rd, 210 Plant Biology Labs, East Lansing, MI 48824, USA
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Rd, 210 Plant Biology Labs, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Sharkey TD. Is triose phosphate utilization important for understanding photosynthesis? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5521-5525. [PMID: 31624849 PMCID: PMC6812704 DOI: 10.1093/jxb/erz393] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article comments on:Fabre D, Yin X, Dingkuhn M, Clément-Vidal A, Roques S, Rouan L, Soutiras A, Luquet D. 2019. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation? Journal of Experimental Botany 70, 5773–5785.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, East Lansing, MI, USA
- Plant Biotechnology for Health and Sustainability Program, East Lansing, MI, USA
- Plant Resilience Institute, East Lansing, MI, USA
| |
Collapse
|
15
|
Earles JM, Buckley TN, Brodersen CR, Busch FA, Cano FJ, Choat B, Evans JR, Farquhar GD, Harwood R, Huynh M, John GP, Miller ML, Rockwell FE, Sack L, Scoffoni C, Struik PC, Wu A, Yin X, Barbour MM. Embracing 3D Complexity in Leaf Carbon-Water Exchange. TRENDS IN PLANT SCIENCE 2019; 24:15-24. [PMID: 30309727 DOI: 10.1016/j.tplants.2018.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Leaves are a nexus for the exchange of water, carbon, and energy between terrestrial plants and the atmosphere. Research in recent decades has highlighted the critical importance of the underlying biophysical and anatomical determinants of CO2 and H2O transport, but a quantitative understanding of how detailed 3D leaf anatomy mediates within-leaf transport has been hindered by the lack of a consensus framework for analyzing or simulating transport and its spatial and temporal dynamics realistically, and by the difficulty of measuring within-leaf transport at the appropriate scales. We discuss how recent technological advancements now make a spatially explicit 3D leaf analysis possible, through new imaging and modeling tools that will allow us to address long-standing questions related to plant carbon-water exchange.
Collapse
Affiliation(s)
- J Mason Earles
- School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, USA; Equal contribution
| | - Thomas N Buckley
- Department of Plant Sciences, University of California Davis, CA 95916, USA; Equal contribution
| | - Craig R Brodersen
- School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, USA
| | - Florian A Busch
- Research School of Biology, Australian National University, Action, ACT 0200, Australia
| | - F Javier Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - John R Evans
- Research School of Biology, Australian National University, Action, ACT 0200, Australia
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Action, ACT 0200, Australia
| | | | - Minh Huynh
- University of Sydney, Sydney, NSW 2006, Australia
| | - Grace P John
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA 90095, USA
| | - Megan L Miller
- College of Natural Resources, University of Idaho, Moscow, ID 83844, USA
| | - Fulton E Rockwell
- Department of Organism and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA 90095, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University Los Angeles, CA 90032, USA
| | - Paul C Struik
- Department of Plant Sciences, Wageningen University, Centre for Crop Systems Analysis, 6700 AK Wageningen, The Netherlands
| | - Alex Wu
- Centre for Plant Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xinyou Yin
- Department of Plant Sciences, Wageningen University, Centre for Crop Systems Analysis, 6700 AK Wageningen, The Netherlands
| | - Margaret M Barbour
- University of Sydney, Sydney, NSW 2006, Australia; www.sydney.edu.au/science/people/margaret.barbour.
| |
Collapse
|
16
|
Zhang MM, Fan DY, Sun GY, Chow WS. Optimising the linear electron transport rate measured by chlorophyll a fluorescence to empirically match the gross rate of oxygen evolution in white light: towards improved estimation of the cyclic electron flux around photosystem I in leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1138-1148. [PMID: 32290975 DOI: 10.1071/fp18039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/25/2018] [Indexed: 06/11/2023]
Abstract
The cyclic electron flux (CEF) around photosystem I (PSI) was discovered in isolated chloroplasts more than six decades ago, but its quantification has been hampered by the absence of net formation of a product or net consumption of a substrate. We estimated in vivo CEF in leaves as the difference (ΔFlux) between the total electron flux through PSI (ETR1) measured by a near infrared signal, and the linear electron flux through both photosystems by optimised measurement of chlorophyll a fluorescence (LEFfl). Chlorophyll fluorescence was excited by modulated green light from a light-emitting diode at an optimal average irradiance, and the fluorescence was detected at wavelengths >710nm. In this way, LEFfl matched the gross rate of oxygen evolution multiplied by 4 (LEFO2) in broad-spectrum white actinic irradiance up to half (spinach, poplar and rice) or one third (cotton) of full sunlight irradiance. This technique of estimating CEF can be applied to leaves attached to a plant.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Da-Yong Fan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Guang-Yu Sun
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|