1
|
Cui Y, Ouyang S, Zhao Y, Tie L, Shao C, Duan H. Plant responses to high temperature and drought: A bibliometrics analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1052660. [PMID: 36438139 PMCID: PMC9681914 DOI: 10.3389/fpls.2022.1052660] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Global climate change is expected to further increase the frequency and severity of extreme events, such as high temperature/heat waves as well as drought in the future. Thus, how plant responds to high temperature and drought has become a key research topic. In this study, we extracted data from Web of Science Core Collections database, and synthesized plant responses to high temperature and drought based on bibliometric methods using software of R and VOSviewer. The results showed that a stabilized increasing trend of the publications (1199 papers) was found during the period of 2008 to 2014, and then showed a rapid increase (2583 papers) from year 2015 to 2021. Secondly, the top five dominant research fields of plant responses to high temperature and drought were Plant Science, Agroforestry Science, Environmental Science, Biochemistry, and Molecular Biology, respectively. The largest amount of published article has been found in the Frontiers in Plant Science journal, which has the highest global total citations and H-index. We also found that the journal of Plant Physiology has the highest local citations. From the most cited papers and references, the most important research focus was the improvement of crop yield and vegetation stress resistance. Furthermore, "drought" has been the most prominent keyword over the last 14 years, and more attention has been paid to "climate change" over the last 5 years. Under future climate change, how to regulate growth and development of food crops subjected to high temperature and drought stress may become a hotspot, and increasing research is critical to provide more insights into plant responses to high temperature and drought by linking plant above-below ground components. To summarize, this research will contribute to a comprehensive understanding of the past, present, and future research on plant responses to high temperature and drought.
Collapse
|
2
|
Takanashi H, Kajiya-Kanegae H, Nishimura A, Yamada J, Ishimori M, Kobayashi M, Yano K, Iwata H, Tsutsumi N, Sakamoto W. DOMINANT AWN INHIBITOR Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. PLANT & CELL PHYSIOLOGY 2022; 63:901-918. [PMID: 35640621 DOI: 10.1093/pcp/pcac057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Kouwa Nishi-Shimbashi Bldg. 5f, 2-14-1 Nishi-Shimbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Asuka Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Junko Yamada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
3
|
Wahinya FW, Yamazaki K, Jing Z, Takami T, Kamiya T, Kajiya-Kanegae H, Takanashi H, Iwata H, Tsutsumi N, Fujiwara T, Sakamoto W. Sorghum Ionomics Reveals the Functional SbHMA3a Allele that Limits Excess Cadmium Accumulation in Grains. PLANT & CELL PHYSIOLOGY 2022; 63:713-728. [PMID: 35312772 DOI: 10.1093/pcp/pcac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum-an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation.
Collapse
Affiliation(s)
- Fiona Wacera Wahinya
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Zihuan Jing
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 2-14-1 Nishi-shimbashi, Minato-ku, Tokyo, 105-0003 Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
4
|
Kashima M, Sakamoto RL, Saito H, Ohkubo S, Tezuka A, Deguchi A, Hashida Y, Kurita Y, Iwayama K, Adachi S, Nagano AJ. Genomic Basis of Transcriptome Dynamics in Rice under Field Conditions. PLANT & CELL PHYSIOLOGY 2021; 62:1436-1445. [PMID: 34131748 PMCID: PMC8600290 DOI: 10.1093/pcp/pcab088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/09/2021] [Accepted: 06/15/2021] [Indexed: 05/07/2023]
Abstract
How genetic variations affect gene expression dynamics of field-grown plants remains unclear. Expression quantitative trait loci (eQTL) analysis is frequently used to find genomic regions underlying gene expression polymorphisms. This approach requires transcriptome data for the complete set of the QTL mapping population under the given conditions. Therefore, only a limited range of environmental conditions is covered by a conventional eQTL analysis. We sampled sparse time series of field-grown rice from chromosome segment substitution lines (CSSLs) and conducted RNA sequencing (RNA-Seq). Then, by using statistical analysis integrating meteorological data and the RNA-Seq data, we identified 1,675 eQTLs leading to polymorphisms in expression dynamics under field conditions. A genomic region on chromosome 11 influences the expression of several defense-related genes in a time-of-day- and scaled-age-dependent manner. This includes the eQTLs that possibly influence the time-of-day- and scaled-age-dependent differences in the innate immunity between Koshihikari and Takanari. Based on the eQTL and meteorological data, we successfully predicted gene expression under environments different from training environments and in rice cultivars with more complex genotypes than the CSSLs. Our novel approach of eQTL identification facilitated the understanding of the genetic architecture of expression dynamics under field conditions, which is difficult to assess by conventional eQTL studies. The prediction of expression based on eQTLs and environmental information could contribute to the understanding of plant traits under diverse field conditions.
Collapse
Affiliation(s)
- Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | | | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo-ku, Kyoto 606-8317, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Maezato 1091-1, Ishigaki, Okinawa 907-0002, Japan
| | - Satoshi Ohkubo
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake, Sakyo-ku, Kyoto 606-8317, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Ayumi Tezuka
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Ayumi Deguchi
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Yoichi Hashida
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Yuko Kurita
- Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Koji Iwayama
- Faculty of Data Science, Shiga University, Bamba 1-1-1, Hikone, Shiga 522-0069, Japan
| | - Shunsuke Adachi
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | | |
Collapse
|
5
|
NB-LRR-encoding genes conferring susceptibility to organophosphate pesticides in sorghum. Sci Rep 2021; 11:19828. [PMID: 34615901 PMCID: PMC8494876 DOI: 10.1038/s41598-021-98908-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Organophosphate is the commonly used pesticide to control pest outbreak, such as those by aphids in many crops. Despite its wide use, however, necrotic lesion and/or cell death following the application of organophosphate pesticides has been reported to occur in several species. To understand this phenomenon, called organophosphate pesticide sensitivity (OPS) in sorghum, we conducted QTL analysis in a recombinant inbred line derived from the Japanese cultivar NOG, which exhibits OPS. Mapping OPS in this population identified a prominent QTL on chromosome 5, which corresponded to Organophosphate-Sensitive Reaction (OSR) reported previously in other mapping populations. The OSR locus included a cluster of three genes potentially encoding nucleotide-binding leucine-rich repeat (NB-LRR, NLR) proteins, among which NLR-C was considered to be responsible for OPS in a dominant fashion. NLR-C was functional in NOG, whereas the other resistant parent, BTx623, had a null mutation caused by the deletion of promoter sequences. Our finding of OSR as a dominant trait is important not only in understanding the diversified role of NB-LRR proteins in cereals but also in securing sorghum breeding free from OPS.
Collapse
|
6
|
Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Sci Rep 2021; 11:9398. [PMID: 33931706 PMCID: PMC8087780 DOI: 10.1038/s41598-021-88917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Although spikelet-related traits such as size of anther, spikelet, style, and stigma are associated with sexual reproduction in grasses, no QTLs have been reported in sorghum. Additionally, there are only a few reports on sorghum QTLs related to grain size, such as grain length, width, and thickness. In this study, we performed QTL analyses of nine spikelet-related traits (length of sessile spikelet, pedicellate spikelet, pedicel, anther, style, and stigma; width of sessile spikelet and stigma; and stigma pigmentation) and six grain-related traits (length, width, thickness, length/width ratio, length/thickness ratio, and width/thickness ratio) using sorghum recombinant inbred lines. We identified 36 and 7 QTLs for spikelet-related traits and grain-related traits, respectively, and found that most sorghum spikelet organ length- and width-related traits were partially controlled by the dwarf genes Dw1 and Dw3. Conversely, we found that these Dw genes were not strongly involved in the regulation of grain size. The QTLs identified in this study aid in understanding the genetic basis of spikelet- and grain-related traits in sorghum.
Collapse
|
7
|
Mochida K, Nishii R, Hirayama T. Decoding Plant-Environment Interactions That Influence Crop Agronomic Traits. PLANT & CELL PHYSIOLOGY 2020; 61:1408-1418. [PMID: 32392328 PMCID: PMC7434589 DOI: 10.1093/pcp/pcaa064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/26/2020] [Indexed: 05/16/2023]
Abstract
To ensure food security in the face of increasing global demand due to population growth and progressive urbanization, it will be crucial to integrate emerging technologies in multiple disciplines to accelerate overall throughput of gene discovery and crop breeding. Plant agronomic traits often appear during the plants' later growth stages due to the cumulative effects of their lifetime interactions with the environment. Therefore, decoding plant-environment interactions by elucidating plants' temporal physiological responses to environmental changes throughout their lifespans will facilitate the identification of genetic and environmental factors, timing and pathways that influence complex end-point agronomic traits, such as yield. Here, we discuss the expected role of the life-course approach to monitoring plant and crop health status in improving crop productivity by enhancing the understanding of plant-environment interactions. We review recent advances in analytical technologies for monitoring health status in plants based on multi-omics analyses and strategies for integrating heterogeneous datasets from multiple omics areas to identify informative factors associated with traits of interest. In addition, we showcase emerging phenomics techniques that enable the noninvasive and continuous monitoring of plant growth by various means, including three-dimensional phenotyping, plant root phenotyping, implantable/injectable sensors and affordable phenotyping devices. Finally, we present an integrated review of analytical technologies and applications for monitoring plant growth, developed across disciplines, such as plant science, data science and sensors and Internet-of-things technologies, to improve plant productivity.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Corresponding author: E-mail, ; Fax, +81-45-503-9609
| | - Ryuei Nishii
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
8
|
Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Wacera W F, Omollo EA, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. PLANT & CELL PHYSIOLOGY 2020; 61:1262-1272. [PMID: 32353144 DOI: 10.1093/pcp/pcaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] grown locally by Japanese farmers is generically termed Takakibi, although its genetic diversity compared with geographically distant varieties or even within Takakibi lines remains unclear. To explore the genomic diversity and genetic traits controlling biomass and other physiological traits in Takakibi, we focused on a landrace, NOG, in this study. Admixture analysis of 460 sorghum accessions revealed that NOG belonged to the subgroup that represented Asian sorghums, and it was only distantly related to American/African accessions including BTx623. In an attempt to dissect major traits related to biomass, we generated a recombinant inbred line (RIL) from a cross between BTx623 and NOG, and we constructed a high-density linkage map based on 3,710 single-nucleotide polymorphisms obtained by restriction-site-associated DNA sequencing of 213 RIL individuals. Consequently, 13 fine quantitative trait loci (QTLs) were detected on chromosomes 2, 3, 6, 7, 8 and 9, which included five QTLs for days to heading, three for plant height (PH) and total shoot fresh weight and two for Brix. Furthermore, we identified two dominant loci for PH as being identical to the previously reported dw1 and dw3. Together, these results corroborate the diversified genome of Japanese Takakibi, while the RIL population and high-density linkage map generated in this study will be useful for dissecting other important traits in sorghum.
Collapse
Affiliation(s)
- Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8517, Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Fiona Wacera W
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Everlyne A Omollo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Michiharu Nakano
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Toshiaki Kozuka
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Makoto Kusaba
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|