1
|
Bobalova J, Strouhalova D, Bobal P. Common Post-translational Modifications (PTMs) of Proteins: Analysis by Up-to-Date Analytical Techniques with an Emphasis on Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14825-14837. [PMID: 37792446 PMCID: PMC10591476 DOI: 10.1021/acs.jafc.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Post-translational modifications (PTMs) of biomacromolecules can be useful for understanding the processes by which a relatively small number of individual genes in a particular genome can generate enormous biological complexity in different organisms. The proteomes of barley and the brewing process were investigated by different techniques. However, their diverse and complex PTMs remain understudied. As standard analytical approaches have limitations, innovative analytical approaches need to be developed and applied in PTM studies. To make further progress in this field, it is necessary to specify the sites of modification, as well as to characterize individual isoforms with increased selectivity and sensitivity. This review summarizes advances in the PTM analysis of barley proteins, particularly those involving mass spectrometric detection. Our focus is on monitoring phosphorylation, glycation, and glycosylation, which critically influence functional behavior in metabolism and regulation in organisms.
Collapse
Affiliation(s)
- Janette Bobalova
- Institute
of Analytical Chemistry of the CAS, v. v. i., Veveri 97, Brno 602 00, Czech Republic
| | - Dana Strouhalova
- Institute
of Analytical Chemistry of the CAS, v. v. i., Veveri 97, Brno 602 00, Czech Republic
| | - Pavel Bobal
- Masaryk
University, Department of Chemical Drugs,
Faculty of Pharmacy, Palackeho
1946/1, Brno 612 00, Czech Republic
| |
Collapse
|
2
|
Qi F, Wang F, Xiaoyang C, Wang Z, Lin Y, Peng Z, Zhang J, Wang N, Zhang J. Gene Expression Analysis of Different Organs and Identification of AP2 Transcription Factors in Flax ( Linum usitatissimum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3260. [PMID: 37765422 PMCID: PMC10535939 DOI: 10.3390/plants12183260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Flax (Linum usitatissimum L.) is an important oilseed crop widely cultivated for its oil and fiber. This study conducted transcriptome analysis to analyze the gene expression profiles of roots, leaves, stamens, pistils, and fruits in the flax cultivar Longya10. A total of 43,471 genes were detected in the RNA-seq data, with 34,497 genes showing differential expression levels between different organs. Gene expression patterns varied across different organs, with differences observed in expression-regulating genes within specific organs. However, 23,448 genes were found to be commonly expressed across all organs. Further analysis revealed organ-specific gene expressions, with 236, 690, 544, 909, and 1212 genes identified in pistils, fruits, leaves, roots, and stamens, respectively. Gene Ontology (GO) enrichment analysis was performed on these organ-specific genes, and significant enrichment was observed in various biological processes, cellular components, and molecular functions, providing new insights for the specific growth patterns of flax organs. Furthermore, we investigated the expression differences of AP2 transcription factors in various tissues and organs of Longya10. We identified 96 AP2 genes that were differentially expressed in different organs and annotated them into various biological pathways. Our results suggest that AP2 transcription factors may play important roles in regulating the growth and development of flax organs including stress response. In summary, our study provides a comprehensive analysis of gene expression patterns in different organs and tissues of flax plant and identifies potential critical regulators of flax organ growth and development. These findings contribute to a better understanding of the molecular mechanisms underlying flax organ development and may have important implications for the genetic improvement of flax crops.
Collapse
Affiliation(s)
- Fan Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Chunxiao Xiaoyang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
3
|
Kaur G, Toora PK, Tuan PA, McCartney CA, Izydorczyk MS, Badea A, Ayele BT. Genome-wide association and targeted transcriptomic analyses reveal loci and candidate genes regulating preharvest sprouting in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:202. [PMID: 37642745 DOI: 10.1007/s00122-023-04449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
KEY MESSAGE Genome-wide association study of diverse barley genotypes identified loci, single nucleotide polymorphisms and candidate genes that control seed dormancy and therefore enhance resistance to preharvest sprouting. Preharvest sprouting (PHS) causes significant yield and quality loss in barley and it is strongly associated with the level of seed dormancy. This study performed genome-wide association study using a collection of 255 diverse barley genotypes grown over four environments to identify loci controlling dormancy/PHS. Our phenotypic analysis revealed substantial variation in germination index/dormancy levels among the barley genotypes. Marker-trait association and linkage disequilibrium (LD) decay analyses identified 16 single nucleotide polymorphisms (SNPs) and two QTLs associated with dormancy/PHS, respectively, on chromosome 3H and 5H explaining 6.9% to 11.1% of the phenotypic variation. QTL.5H consist of 14 SNPs of which 12 SNPs satisfy the FDR threshold of α = 0.05, and it may represent the SD2 locus. The QTL on 3H consists of one SNP that doesn't satisfy FDR (α = 0.05). Genes harbouring the significant SNPs were analyzed for their expression pattern in the seeds of selected dormant and non-dormant genotypes. Of these genes, HvRCD1, HvPSRP1 and HvF3H exhibited differential expression between the dormant and non-dormant seed samples, suggesting their role in controlling seed dormancy/PHS. Three SNPs located within the differentially expressed genes residing in QTL.5H explained considerable phenotypic variation (≥ 8.6%), suggesting their importance in regulating PHS resistance. Analysis of the SNP marker data in QTL.5H identified a haplotype for PHS resistance. Overall, the study identified loci, SNPs and candidate genes that control dormancy and therefore play important roles in enhancing PHS resistance in barley through marker-assisted breeding.
Collapse
Affiliation(s)
- Gurkamal Kaur
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Parneet K Toora
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Marta S Izydorczyk
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, R3C 3G8, Canada
| | - Ana Badea
- Brandon Research and Development Center, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
4
|
Wang F, Das P, Pal N, Bhawal R, Zhang S, Bhattacharyya MK. A Phosphoproteomics Study of the Soybean root necrosis 1 Mutant Revealed Type II Metacaspases Involved in Cell Death Pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:882561. [PMID: 35928708 PMCID: PMC9344878 DOI: 10.3389/fpls.2022.882561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The soybean root necrosis 1 (rn1) mutation causes progressive browning of the roots soon after germination and provides increased tolerance to the soil-borne oomycete pathogen Phytophthora sojae in soybean. Toward understanding the molecular basis of the rn1 mutant phenotypes, we conducted tandem mass tag (TMT)-labeling proteomics and phosphoproteomics analyses of the root tissues of the rn1 mutant and progenitor T322 line to identify potential proteins involved in manifestation of the mutant phenotype. We identified 3,160 proteins. When the p-value was set at ≤0.05 and the fold change of protein accumulation between rn1 and T322 at ≥1.5 or ≤0.67, we detected 118 proteins that showed increased levels and 32 proteins decreased levels in rn1 as compared to that in T322. The differentially accumulated proteins (DAPs) are involved in several pathways including cellular processes for processing environmental and genetic information, metabolism and organismal systems. Five pathogenesis-related proteins were accumulated to higher levels in the mutant as compared to that in T322. Several of the DAPs are involved in hormone signaling, redox reaction, signal transduction, and cell wall modification processes activated in plant-pathogen interactions. The phosphoproteomics analysis identified 22 phosphopeptides, the levels of phosphorylation of which were significantly different between rn1 and T322 lines. The phosphorylation levels of two type II metacaspases were reduced in rn1 as compared to T322. Type II metacaspase has been shown to be a negative regulator of hypersensitive cell death. In absence of the functional Rn1 protein, two type II metacaspases exhibited reduced phosphorylation levels and failed to show negative regulatory cell death function in the soybean rn1 mutant. We hypothesize that Rn1 directly or indirectly phosphorylates type II metacaspases to negatively regulate the cell death process in soybean roots.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Priyanka Das
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Narinder Pal
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
5
|
Baudouin E, Puyaubert J, Meimoun P, Blein-Nicolas M, Davanture M, Zivy M, Bailly C. Dynamics of Protein Phosphorylation during Arabidopsis Seed Germination. Int J Mol Sci 2022; 23:ijms23137059. [PMID: 35806063 PMCID: PMC9266807 DOI: 10.3390/ijms23137059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Seed germination is critical for early plantlet development and is tightly controlled by environmental factors. Nevertheless, the signaling networks underlying germination control remain elusive. In this study, the remodeling of Arabidopsis seed phosphoproteome during imbibition was investigated using stable isotope dimethyl labeling and nanoLC-MS/MS analysis. Freshly harvested seeds were imbibed under dark or constant light to restrict or promote germination, respectively. For each light regime, phosphoproteins were extracted and identified from dry and imbibed (6 h, 16 h, and 24 h) seeds. A large repertoire of 10,244 phosphopeptides from 2546 phosphoproteins, including 110 protein kinases and key regulators of seed germination such as Delay Of Germination 1 (DOG1), was established. Most phosphoproteins were only identified in dry seeds. Early imbibition led to a similar massive downregulation in dormant and non-dormant seeds. After 24 h, 411 phosphoproteins were specifically identified in non-dormant seeds. Gene ontology analyses revealed their involvement in RNA and protein metabolism, transport, and signaling. In addition, 489 phosphopeptides were quantified, and 234 exhibited up or downregulation during imbibition. Interaction networks and motif analyses revealed their association with potential signaling modules involved in germination control. Our study provides evidence of a major role of phosphosignaling in the regulation of Arabidopsis seed germination.
Collapse
Affiliation(s)
- Emmanuel Baudouin
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
- Correspondence: ; Tel.: +33-1-44-27-59-87
| | - Juliette Puyaubert
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
| | - Patrice Meimoun
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
| | - Mélisande Blein-Nicolas
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190 Gif-sur-Yvette, France; (M.B.-N.); (M.D.); (M.Z.)
| | - Marlène Davanture
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190 Gif-sur-Yvette, France; (M.B.-N.); (M.D.); (M.Z.)
| | - Michel Zivy
- PAPPSO, Génétique Quantitative et Evolution (GQE), Université Paris-Saclay, INRAE, CNRS, AgroParisTech, F-91190 Gif-sur-Yvette, France; (M.B.-N.); (M.D.); (M.Z.)
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France; (J.P.); (P.M.); (C.B.)
| |
Collapse
|
6
|
Yamashita K, Umezawa T. Phosphoproteomic Approaches to Evaluate ABA Signaling. Methods Mol Biol 2022; 2462:163-179. [PMID: 35152388 DOI: 10.1007/978-1-0716-2156-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that regulates various processes in plants (e.g., seed dormancy/germination, abiotic/biotic stress responses). As protein phosphorylation is involved in the major pathways of ABA signaling, it is necessary to elucidate the phosphosignaling pathway involved in the ABA response. Phosphoproteomics enables determination of the proteins phosphorylated in vivo, and recent studies have applied a comparative phosphoproteomic approach to analyze ABA signaling in plants. For example, ABA-responsive phosphoproteins were identified in barley embryos. Furthermore, a phosphoproteomic approach is useful for screening protein kinase substrates by comparative analysis using kinase knockout mutants. Here, some technical points regarding phosphoproteomic analyses of ABA responses in plants are described.
Collapse
Affiliation(s)
- Kota Yamashita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
7
|
Hisano H, Hoffie RE, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:37-46. [PMID: 34459083 PMCID: PMC8710902 DOI: 10.1111/pbi.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | | | - Hiromi Munemori
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Takakazu Matsuura
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Masaki Endo
- Institute of Agrobiological SciencesNAROTsukubaJapan
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | - Kazuhiro Sato
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| |
Collapse
|
8
|
Tappiban P, Ying Y, Xu F, Bao J. Proteomics and Post-Translational Modifications of Starch Biosynthesis-Related Proteins in Developing Seeds of Rice. Int J Mol Sci 2021; 22:5901. [PMID: 34072759 PMCID: PMC8199009 DOI: 10.3390/ijms22115901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Rice (Oryza sativa L.) is a foremost staple food for approximately half the world's population. The components of rice starch, amylose, and amylopectin are synthesized by a series of enzymes, which are responsible for rice starch properties and functionality, and then affect rice cooking and eating quality. Recently, proteomics technology has been applied to the establishment of the differentially expressed starch biosynthesis-related proteins and the identification of posttranslational modifications (PTMs) target starch biosynthesis proteins as well. It is necessary to summarize the recent studies in proteomics and PTMs in rice endosperm to deepen our understanding of starch biosynthesis protein expression and regulation, which will provide useful information to rice breeding programs and industrial starch applications. The review provides a comprehensive summary of proteins and PTMs involved in starch biosynthesis based on proteomic studies of rice developing seeds. Starch biosynthesis proteins in rice seeds were differentially expressed in the developing seeds at different developmental stages. All the proteins involving in starch biosynthesis were identified using proteomics methods. Most starch biosynthesis-related proteins are basically increased at 6-20 days after flowering (DAF) and decreased upon the high-temperature conditions. A total of 10, 14, 2, 17, and 7 starch biosynthesis related proteins were identified to be targeted by phosphorylation, lysine acetylation, succinylation, lysine 2-hydroxyisobutyrylation, and malonylation, respectively. The phosphoglucomutase is commonly targeted by five PTMs types. Research on the function of phosphorylation in multiple enzyme complex formation in endosperm starch biosynthesis is underway, while the functions of other PTMs in starch biosynthesis are necessary to be conducted in the near future.
Collapse
Affiliation(s)
- Piengtawan Tappiban
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Yining Ying
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Feifei Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (P.T.); (Y.Y.); (F.X.)
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
9
|
Matsuoka S, Sato K, Maruki-Imamura R, Noutoshi Y, Okabe T, Kojima H, Umezawa T. Identification of novel compounds that inhibit SnRK2 kinase activity by high-throughput screening. Biochem Biophys Res Commun 2020; 537:57-63. [PMID: 33385806 DOI: 10.1016/j.bbrc.2020.12.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
Abscisic acid (ABA) is a major phytohormone that regulates abiotic stress responses and development. SNF1-rerated protein kinase 2 (SnRK2) is a key regulator of ABA signaling. To isolate compounds which directly affect SnRK2 activity, we optimized a fluorescence-based system for high-throughput screening (HTS) of SnRK2 kinase regulators. Using this system, we screened a chemical library consisting of 16,000 compounds and identified ten compounds (INH1-10) as potential SnRK2 inhibitors. Further characterization of these compounds by in vitro phosphorylation assays confirmed that three of the ten compounds were SnRK2-specific kinase inhibitors. In contrast, seven of ten compounds inhibited ABA-responsive gene expression in Arabidopsis cells. From these results, INH1 was identified as a SnRK2-specific inhibitor in vitro and in vivo. We propose that INH1 could be a lead compound of chemical tools for studying ABA responses in various plant species.
Collapse
Affiliation(s)
- Shoko Matsuoka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Karin Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | | | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-0082, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan; Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8538, Japan; PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
10
|
Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020; 22:E101. [PMID: 33374189 PMCID: PMC7795748 DOI: 10.3390/ijms22010101] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Tatiana Leonova
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Natalia Vashurina
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199004 St. Petersburg, Russia; (T.L.); (N.V.); (A.F.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
11
|
Kamal MM, Ishikawa S, Takahashi F, Suzuki K, Kamo M, Umezawa T, Shinozaki K, Kawamura Y, Uemura M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int J Mol Sci 2020; 21:E8631. [PMID: 33207747 PMCID: PMC7696906 DOI: 10.3390/ijms21228631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase-substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Ko Suzuki
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Masaharu Kamo
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
12
|
Ahsan N, Wilson RS, Rao RSP, Salvato F, Sabila M, Ullah H, Miernyk JA. Mass Spectrometry-Based Identification of Phospho-Tyr in Plant Proteomics. J Proteome Res 2020; 19:561-571. [PMID: 31967836 DOI: 10.1021/acs.jproteome.9b00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
O-Phosphorylation (phosphorylation of the hydroxyl-group of S, T, and Y residues) is among the first described and most thoroughly studied posttranslational modification (PTM). Y-Phosphorylation, catalyzed by Y-kinases, is a key step in both signal transduction and regulation of enzymatic activity in mammalian systems. Canonical Y-kinase sequences are absent from plant genomes/kinomes, often leading to the assumption that plant cells lack O-phospho-l-tyrosine (pY). However, recent improvements in sample preparation, coupled with advances in instrument sensitivity and accessibility, have led to results that unequivocally disproved this assumption. Identification of hundreds of pY-peptides/proteins, followed by validation using genomic, molecular, and biochemical approaches, implies previously unappreciated roles for this "animal PTM" in plants. Herein, we review extant results from studies of pY in plants and propose a strategy for preparation and analysis of pY-peptides that will allow a depth of coverage of the plant pY-proteome comparable to that achieved in mammalian systems.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine , Brown University , Providence , Rhode Island 02903 , United States.,Center for Cancer Research Development, Proteomics Core Facility , Rhode Island Hospital , Providence , Rhode Island 02903 , United States
| | - Rashaun S Wilson
- Keck Mass Spectrometry & Proteomics Resource , Yale University , New Haven , Connecticut 06511 , United States
| | - R Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center , Yenepoya University , Mangalore 575018 , India
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Mercy Sabila
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Hemayet Ullah
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Ján A Miernyk
- Division of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|