1
|
Low ETL, Chan KL, Zaki NM, Taranenko E, Ordway JM, Wischmeyer C, Buntjer J, Halim MAA, Sanusi NSNM, Nagappan J, Rosli R, Bondar E, Amiruddin N, Sarpan N, Ting NC, Chan PL, Ong-Abdullah M, Marjuni M, Mustaffa S, Abdullah N, Azizi N, Bacher B, Lakey N, Tatarinova TV, Manaf MAA, Sambanthamurti R, Singh R. Chromosome-scale Elaeis guineensis and E. oleifera assemblies: comparative genomics of oil palm and other Arecaceae. G3 (BETHESDA, MD.) 2024; 14:jkae135. [PMID: 38918881 PMCID: PMC11373658 DOI: 10.1093/g3journal/jkae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Elaeis guineensis and E. oleifera are the two species of oil palm. E. guineensis is the most widely cultivated commercial species, and introgression of desirable traits from E. oleifera is ongoing. We report an improved E. guineensis genome assembly with substantially increased continuity and completeness, as well as the first chromosome-scale E. oleifera genome assembly. Each assembly was obtained by integration of long-read sequencing, proximity ligation sequencing, optical mapping, and genetic mapping. High interspecific genome conservation is observed between the two species. The study provides the most extensive gene annotation to date, including 46,697 E. guineensis and 38,658 E. oleifera gene predictions. Analyses of repetitive element families further resolve the DNA repeat architecture of both genomes. Comparative genomic analyses identified experimentally validated small structural variants between the oil palm species and resolved the mechanism of chromosomal fusions responsible for the evolutionary descending dysploidy from 18 to 16 chromosomes.
Collapse
Affiliation(s)
- Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Noorhariza Mohd Zaki
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Jared M Ordway
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | | | - Jaap Buntjer
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | - Mohd Amin Ab Halim
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nik Shazana Nik Mohd Sanusi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jayanthi Nagappan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rozana Rosli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Eugeniya Bondar
- Biology Department, University of La Verne, La Verne, CA 91750, USA
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norashikin Sarpan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Ngoot-Chin Ting
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Marhalil Marjuni
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Suzana Mustaffa
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norziha Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norazah Azizi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Blaire Bacher
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | - Nathan Lakey
- Orion Genomics, 3730 Foundry Way, St. Louis, MO 63110, USA
| | | | - Mohamad Arif Abd Manaf
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurti
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Laforest M, Martin SL, Bisaillon K, Soufiane B, Meloche S, Tardif FJ, Page E. The ancestral karyotype of the Heliantheae Alliance, herbicide resistance, and human allergens: Insights from the genomes of common and giant ragweed. THE PLANT GENOME 2024; 17:e20442. [PMID: 38481294 DOI: 10.1002/tpg2.20442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 07/02/2024]
Abstract
Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype-a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.
Collapse
Affiliation(s)
- Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Katherine Bisaillon
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Brahim Soufiane
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sydney Meloche
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - François J Tardif
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| |
Collapse
|
3
|
Bredeson JV, Mudd AB, Medina-Ruiz S, Mitros T, Smith OK, Miller KE, Lyons JB, Batra SS, Park J, Berkoff KC, Plott C, Grimwood J, Schmutz J, Aguirre-Figueroa G, Khokha MK, Lane M, Philipp I, Laslo M, Hanken J, Kerdivel G, Buisine N, Sachs LM, Buchholz DR, Kwon T, Smith-Parker H, Gridi-Papp M, Ryan MJ, Denton RD, Malone JH, Wallingford JB, Straight AF, Heald R, Hockemeyer D, Harland RM, Rokhsar DS. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat Commun 2024; 15:579. [PMID: 38233380 PMCID: PMC10794172 DOI: 10.1038/s41467-023-43012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/27/2023] [Indexed: 01/19/2024] Open
Abstract
Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.
Collapse
Affiliation(s)
- Jessen V Bredeson
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Therese Mitros
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Owen Kabnick Smith
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Kelly E Miller
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Jessica B Lyons
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sanjit S Batra
- Computer Science Division, University of California Berkeley, 2626 Hearst Avenue, Berkeley, CA, 94720, USA
| | - Joseph Park
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Kodiak C Berkoff
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Christopher Plott
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Guadalupe Aguirre-Figueroa
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Maura Lane
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Isabelle Philipp
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gwenneg Kerdivel
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Buisine
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Heidi Smith-Parker
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Marcos Gridi-Papp
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Michael J Ryan
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Robert D Denton
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John H Malone
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA.
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA.
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 9040495, Japan.
| |
Collapse
|
4
|
Ma H, Ding W, Chen Y, Zhou J, Chen W, Lan C, Mao H, Li Q, Yan W, Su H. Centromere Plasticity With Evolutionary Conservation and Divergence Uncovered by Wheat 10+ Genomes. Mol Biol Evol 2023; 40:msad176. [PMID: 37541261 PMCID: PMC10422864 DOI: 10.1093/molbev/msad176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Centromeres (CEN) are the chromosomal regions that play a crucial role in maintaining genomic stability. The underlying highly repetitive DNA sequences can evolve quickly in most eukaryotes, and promote karyotype evolution. Despite their variability, it is not fully understood how these widely variable sequences ensure the homeostasis of centromere function. In this study, we investigated the genetics and epigenetics of CEN in a population of wheat lines from global breeding programs. We captured a high degree of sequences, positioning, and epigenetic variations in the large and complex wheat CEN. We found that most CENH3-associated repeats are Cereba element of retrotransposons and exhibit phylogenetic homogenization across different wheat lines, but the less-associated repeat sequences diverge on their own way in each wheat line, implying specific mechanisms for selecting certain repeat types as functional core CEN. Furthermore, we observed that CENH3 nucleosome structures display looser wrapping of DNA termini on complex centromeric repeats, including the repositioned CEN. We also found that strict CENH3 nucleosome positioning and intrinsic DNA features play a role in determining centromere identity among different lines. Specific non-B form DNAs were substantially associated with CENH3 nucleosomes for the repositioned centromeres. These findings suggest that multiple mechanisms were involved in the adaptation of CENH3 nucleosomes that can stabilize CEN. Ultimately, we proposed a remarkable epigenetic plasticity of centromere chromatin within the diverse genomic context, and the high robustness is crucial for maintaining centromere function and genome stability in wheat 10+ lines as a result of past breeding selections.
Collapse
Affiliation(s)
- Huan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wentao Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
5
|
Glugoski L, Deon GA, Nogaroto V, Moreira-Filho O, Vicari MR. Robertsonian Fusion Site in Rineloricaria pentamaculata (Siluriformes: Loricariidae): Involvement of 5S Ribosomal DNA and Satellite Sequences. Cytogenet Genome Res 2023; 162:657-664. [PMID: 37054691 DOI: 10.1159/000530636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Cytogenetic studies demonstrated that unstable chromosomal sites in armored catfishes (Loricariidae) triggered intense karyotypic diversification, mainly derived from Robertsonian rearrangements. In Loricariinae, the presence of ribosomal DNA (rDNA) clusters and their flanking repeated regions (such as microsatellites or partial transposable element sequences) was proposed to facilitate chromosomal rearrangements. Hence, this study aimed to characterize the numerical chromosomal polymorphism observed in Rineloricaria pentamaculata and evaluate the chromosomal rearrangements which originated diploid chromosome number (2n) variation, from 56 to 54. Our data indicate a centric fusion event between acrocentric chromosomes of pairs 15 and 18, bearing 5S rDNA sites on their short (p) arms. This chromosome fusion established the numerical polymorphism, decreasing the 2n from original 56 (karyomorph A) to 55 in karyomorph B and 54 in karyomorph C. Although vestiges of telomeric sequences were evidenced at the fusion point, no 5S rDNA was detected in this region. The acrocentric chromosomes involved in the origin of the fusion were enriched with (CA)n and (GA)n microsatellites. Repetitive sequences in the acrocentric chromosomes subtelomeres have facilitated the rearrangement. Our study thus reinforces the view on the important role of particular repetitive DNA classes in promoting chromosome fusions which frequently drive Rineloricaria karyotype evolution.
Collapse
Affiliation(s)
- Larissa Glugoski
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Geize A Deon
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Viviane Nogaroto
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
6
|
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2051-2063. [PMID: 35722725 PMCID: PMC9616519 DOI: 10.1111/pbi.13875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.
Collapse
Affiliation(s)
- Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life SciencesLinyi UniversityLinyiChina
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
7
|
Eckardt NA, Birchler JA, Meyers BC. Focus on plant genetics: Celebrating Gregor Mendel's 200th birth anniversary. THE PLANT CELL 2022; 34:2453-2454. [PMID: 35478254 PMCID: PMC9252500 DOI: 10.1093/plcell/koac123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 05/09/2023]
Affiliation(s)
| | - James A Birchler
- Senior Editor, The Plant Cell, American Society of Plant Biologists, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Blake C Meyers
- Editor-in-Chief, The Plant Cell, American Society of Plant Biologists, USA
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|