1
|
Liang M, Ji T, Li S, Wang X, Cui L, Gao L, Wan H, Ma S, Tian Y. Silencing CsMAP65-2 and CsMAP65-3 in cucumber reduces susceptibility to Meloidogyne incognita. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109356. [PMID: 39637709 DOI: 10.1016/j.plaphy.2024.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Root knot nematodes (RKNs) induce hypertrophy and cell proliferation within the vascular cylinders of host plants, leading to the formation of giant cells (GCs) that are enlarged, multinucleate cells with high metabolic activity. These GCs are formed through repeated karyokinesis without cytokinesis and are accompanied by significant changes in cytoskeleton organization. In this study, two microtubule-binding protein genes, CsMAP65-2 and CsMAP65-3, are upregulated in cucumber roots upon RKNs infection, specifically at 3, 96, and 120 hpi. GUS expression analysis further confirmed the induction of CsMAP65-2 and CsMAP65-3 in both roots and nematode-induced galls. Silencing CsMAP65-2 or CsMAP65-3 using VIGS technology led to a reduction in gall size and number, as well as a decrease in GCs number (24.98% for CsMAP65-2; 19.48% for CsMAP65-3) and area (6% for CsMAP65-2; 4% for CsMAP65-3), compared to control plants. Furthermore, qRT-PCR analysis revealed upregulation of CsMYC2、CsPR1、CsPAD4, and CsPDF1 in CsMAP65-2 silenced lines and upregulation of CsFRK1 in CsMAP65-3 silenced lines, while CsJAZ1 was downregulated in both silenced lines. These findings suggest that CsMAP65-2 and CsMAP65-3 are critical for GCs development during RKN infection and provide a foundation for breeding nematode-resistant cucumber varieties. This research also offers insights for developing sustainable nematode management strategies in gourd crop cultivation.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lujing Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongjian Wan
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Zhang Y, Wang S, Zhang C, Qi M, Liu L, Yang L, Lian N. Genome-Wide Characterization of IQD Family Proteins in Apple and Functional Analysis of the Microtubule-Regulating Abilities of MdIQD17 and MdIQD28 under Cold Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2532. [PMID: 39274016 PMCID: PMC11397337 DOI: 10.3390/plants13172532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Microtubules undergo dynamic remodeling in response to diverse abiotic stress in plants. The plant-specific IQ67 DOMAIN (IQD) family proteins serve as microtubule-associated proteins, playing multifaceted roles in plant development and response to abiotic stress. However, the biological function of IQD genes in apple remains unclear. In this study, we conducted a comprehensive analysis of the Malus domestica genome, identifying 42 IQD genes distributed across 17 chromosomes and categorized them into four subgroups. Promoter analysis revealed the presence of stress-responsive elements. Subsequent expression analysis highlighted the significant upregulation of MdIQD17 and MdIQD28 in response to cold treatments, prompting their selection for further functional investigation. Subcellular localization studies confirmed the association of MdIQD17 and MdIQD28 with microtubules. Crucially, confocal microscopy and quantification revealed diminished microtubule depolymerization in cells transiently overexpressing MdIQD17 and MdIQD28 compared to wild-type cells during cold conditions. In conclusion, this study provides a comprehensive analysis of IQD genes in apple, elucidating their molecular mechanism in response to cold stress.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shengjie Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chaochao Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meng Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Luoqi Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lipeng Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Zhang Z, Zhang H, Liu J, Chen K, Wang Y, Zhang G, Li L, Yue H, Weng Y, Li Y, Chen P. The mutation of CsSUN, an IQD family protein, is responsible for the short and fat fruit (sff) in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112177. [PMID: 38964612 DOI: 10.1016/j.plantsci.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
The fruit shape of cucumber is an important agronomic trait, and mining regulatory genes, especially dominant ones, is vital for cucumber breeding. In this study, we identified a short and fat fruit mutant, named sff, from an EMS mutagenized population. Compared to the CCMC (WT), sff (MT) exhibited reduced fruit length and increased dimeter. Segregation analysis revealed that the sff phenotype is controlled by a semi-dominant single gene with dosage effects. Through map-based cloning, the SFF locus was narrowed down to a 52.6 kb interval with two SNPs (G651A and C1072T) in the second and third exons of CsaV3_1G039870, which encodes an IQD family protein, CsSUN. The G651A within the IQ domain of CsSUN was identified as the unique SNP among 114 cucumber accessions, and it was the primary cause of the functional alteration in CsSUN. By generating CsSUN knockout lines in cucumber, we confirmed that CsSUN was responsible for sff mutant phenotype. The CsSUN is localized to the plasma membrane. CsSUN exhibited the highest expression in the fruit with lower expression in sff compared to WT. Histological observations suggest that the sff mutant phenotype is due to increased transverse cell division and inhibited longitudinal cell division. Transcriptome analysis revealed that CsSUN significantly affected the expression of genes related to cell division, expansion, and auxin signal transduction. This study unveils CsSUN's crucial role in shaping cucumber fruit and offers novel insights for cucumber breeding.
Collapse
Affiliation(s)
- Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lixia Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI 53706, USA
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Li J, Eltaher S, Freeman B, Singh S, Ali GS. Comprehensive genetic diversity and genome-wide association studies revealed the genetic basis of avocado fruit quality traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1433436. [PMID: 39193209 PMCID: PMC11347836 DOI: 10.3389/fpls.2024.1433436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Introduction Avocado (Persea americana) is a highly nutritious fruit gaining worldwide popularity. However, its cultivation is currently reliant on a limited number of cultivars with restricted genetic diversity. This study aims to investigate the genetic diversity and population structure of avocado germplasm and identify genetic loci associated with key fruit quality traits that influence customer preference. Methods A diversity panel of 110 avocado accessions was analyzed using 4,706 high-quality single nucleotide polymorphisms (SNPs). Genetic diversity and population structure were analyzed using pairwise FST, AMOVA, admixture analysis, and phylogenetic analysis. Genome-wide association studies (GWAS) were conducted targeting nine fruit quality traits using two models: General Linear Model (GLM) with Principal Component Analysis (PCA) and Mixed Linear Model (MLM) with PCA and kinship (PCA + K). Results The analysis revealed three distinct populations corresponding to the three avocado ecotypes: Guatemalan, West Indian, and Mexican. Phylogenetic analysis indicated a closer relationship between the Guatemalan and West Indian races compared to the Mexican race in our Florida germplasm collection. GWAS led to identification of 12 markers within 11 genomic regions significantly associated with fruit quality traits such as fruit color, shape, taste, and skin texture. These markers explained between 14.84% to 43.96% of the phenotypic variance, with an average of 24.63%. Annotation of these genomic regions unveiled candidate genes potentially responsible for controlling these traits. Discussion The findings enhance our understanding of genetic diversity and population structure in avocado germplasm. The identified genetic loci provide valuable insights into the genetic basis of fruit quality traits, aiding breeding programs in developing improved avocado cultivars. Marker-assisted selection can accelerate the development of new varieties, promoting a more diverse and resilient avocado market.
Collapse
Affiliation(s)
| | | | | | | | - Gul Shad Ali
- Subtropical Horticulture Research Station, United States Department of Agriculture, Agriculture Research Service, Miami, FL, United States
| |
Collapse
|
5
|
Eun CH, Ko JG, Kim IJ. Characterization of a New Citrus Mutant Induced by Gamma Irradiation with a Unique Fruit Shape, Gwonje-Early, and Determination of Specific Selection Markers Using Allele-Specific PCR. PLANTS (BASEL, SWITZERLAND) 2024; 13:911. [PMID: 38592930 PMCID: PMC10974580 DOI: 10.3390/plants13060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Gamma-ray irradiation is one of the most widely used mutagens worldwide. We previously conducted mutation breeding using gamma irradiation to develop new Citrus unshiu varieties. Among these mutants, Gwonje-early had an ovate shape, a protrusion of the upper part of the fruit, and a large fruit size compared with wild-type (WT) fruits. We investigated the external/internal morphological characteristics and fruit sugar/acid content of Gwonje-early. Additionally, we investigated genome-wide single-nucleotide polymorphisms (SNPs) and insertion/deletion (InDel) variants in Gwonje-early using whole-genome re-sequencing. Functional annotation by Gene Ontology analysis confirmed that InDels were more commonly annotated than SNPs. To identify specific molecular markers for Gwonje-early, allele-specific PCR was performed using homozygous SNPs detected via Gwonje-early genome re-sequencing. The GJ-SNP1 and GJ-SNP4 primer sets were effectively able to distinguish Gwonje-early from the WT and other commercial citrus varieties, demonstrating their use as specific molecular markers for Gwonje-early. These findings also have important implications in terms of intellectual property rights and the variety protection of Gwonje-early. Our results may provide insights into the understanding of morphological traits and the molecular breeding mechanisms of citrus species.
Collapse
Affiliation(s)
- Chang-Ho Eun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju-Si 63243, Republic of Korea
| | - Jung-Gwon Ko
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-Si 63243, Republic of Korea
| | - In-Jung Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-Si 63243, Republic of Korea
- Research Institute for Subtropical Agriculture and Biotechnology, SARI, Jeju National University, Jeju-Si 63243, Republic of Korea
| |
Collapse
|
6
|
Bao Z, Guo Y, Meng X, Shi C, Ouyang B, Qu X, Wang P. Microtubule-associated proteins MAP65-1 and SUN18/IQD26 coordinately regulate tomato fruit shape by affecting cell division. PLANT PHYSIOLOGY 2024; 194:629-633. [PMID: 37933687 DOI: 10.1093/plphys/kiad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Microtubule-associated proteins MAP65-1 and SUN18 function additively in fruit shape regulation by modulating cell division patterns but not changing cell morphology.
Collapse
Affiliation(s)
- Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiangxu Meng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
7
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|