1
|
Wei J, Zhou Q, Zhang J, Wu M, Li G, Yang L. Dual RNA-seq reveals distinct families of co-regulated and structurally conserved effectors in Botrytis cinerea infection of Arabidopsis thaliana. BMC Biol 2024; 22:239. [PMID: 39428503 PMCID: PMC11492575 DOI: 10.1186/s12915-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Botrytis cinerea is a broad-host-range pathogen causing gray mold disease and significant yield losses of numerous crops. However, the mechanisms underlying its rapid invasion and efficient killing of plant cells remain unclear. RESULTS In this study, we elucidated the dynamics of B. cinerea infection in Arabidopsis thaliana by live cell imaging and dual RNA sequencing. We found extensive transcriptional reprogramming events in both the pathogen and the host, which involved metabolic pathways, signaling cascades, and transcriptional regulation. For the pathogen, we identified 591 candidate effector proteins (CEPs) and comprehensively analyzed their co-expression, sequence similarity, and structural conservation. The results revealed temporal co-regulation patterns of these CEPs, indicating coordinated deployment of effectors during B. cinerea infection. Through functional screening of 48 selected CEPs in Nicotiana benthamiana, we identified 11 cell death-inducing proteins (CDIPs) in B. cinerea. CONCLUSIONS The findings provide important insights into the transcriptional dynamics and effector biology driving B. cinerea pathogenesis. The rapid infection of this pathogen involves the temporal co-regulation of CEPs and the prominent role of CDIPs in host cell death. This work highlights significant changes in gene expression associated with gray mold disease, underscoring the importance of a diverse repertoire of effectors crucial for successful infection.
Collapse
Affiliation(s)
- Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Bawin T, Krause K. Rising from the shadows: Selective foraging in model shoot parasitic plants. PLANT, CELL & ENVIRONMENT 2024; 47:1118-1127. [PMID: 38058242 DOI: 10.1111/pce.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Despite being sessile, plants nonetheless forage for resources by modulating their growth. Adaptative foraging in response to changes in resource availability and presence of neighbours has strong implications for performance and fitness. It is an even more pressing issue for parasitic plants, which draw resources directly from other plants. Indeed, parasitic plants were demonstrated over the years to direct their growth towards preferred hosts and invest resources in parasitism relative to host quality. In contrast to root parasites that rely mostly on chemical cues, some shoot parasites seem to profit from the ability to integrate different types of abiotic and biotic cues. While significant progress in this field has been made recently, there are still many open questions regarding the molecular perception and the integration of diverse signalling pathways under different ecological contexts. Addressing how different cues are integrated in parasitic plants will be important when unravelling variations in plant interaction pathways, and essential to predict the spread of parasites in natural and agricultural environments. In this review, we discuss this with a focus on Cuscuta species as an emerging parasitic model, and provide research perspectives based on the recent advances in the topic and plant-plant interactions in general.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
González-Fuente M. Parasitic plants are one step ahead: Cuscuta responds transcriptionally to different hosts. PLANT PHYSIOLOGY 2024; 194:609-611. [PMID: 37792723 PMCID: PMC10828220 DOI: 10.1093/plphys/kiad524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Manuel González-Fuente
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
4
|
Bawin T, Didriksen A, Faehn C, Olsen S, Sørensen I, Rose JKC, Krause K. Cuscuta campestris fine-tunes gene expression during haustoriogenesis as an adaptation to different hosts. PLANT PHYSIOLOGY 2023; 194:258-273. [PMID: 37706590 PMCID: PMC10756757 DOI: 10.1093/plphys/kiad505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
The Cuscuta genus comprises obligate parasitic plants that have an unusually wide host range. Whether Cuscuta uses different infection strategies for different hosts or whether the infection strategy is mechanistically and enzymatically conserved remains unknown. To address this, we investigated molecular events during the interaction between field dodder (Cuscuta campestris) and two host species of the Solanum genus that are known to react differently to parasitic infection. We found that host gene induction, particularly of cell wall fortifying genes, coincided with a differential induction of genes for cell wall degradation in the parasite in the cultivated tomato (Solanum lycopersicum) but not in a wild relative (Solanum pennellii). This indicates that the parasite can adjust its gene expression in response to its host. This idea was supported by the increased expression of C. campestris genes encoding an endo-β-1,4-mannanase in response to exposure of the parasite to purified mono- and polysaccharides in a host-independent infection system. Our results suggest multiple key roles of the host cell wall in determining the outcome of an infection attempt.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Alena Didriksen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Corine Faehn
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| |
Collapse
|
5
|
Cui S, Inaba S, Suzaki T, Yoshida S. Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102473. [PMID: 37826989 DOI: 10.1016/j.pbi.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Plants have evolved diverse strategies to meet their nutritional needs. Parasitic plants employ haustoria, specialized structures that facilitate invasion of host plants and nutrient acquisition. Legumes have adapted to nitrogen-limited conditions by developing nodules that accommodate nitrogen-fixing rhizobia. The formation of both haustoria and nodules is induced by signals originating from the interacting organisms, namely host plants and rhizobial bacteria, respectively. Emerging studies showed that both organogenesis crucially involves plant hormones such as auxin, cytokinins, and ethylene and also integrate nutrient availability, particularly nitrogen. In this review, we discuss recent advances on hormonal and environmental control of haustoria and nodules development with side-by-side comparison. These underscore the remarkable plasticity of plant organogenesis.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shoko Inaba
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoko Yoshida
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
6
|
Yokoyama T, Watanabe A, Asaoka M, Nishitani K. Germinating seedlings and mature shoots of Cuscuta campestris respond differently to light stimuli during parasitism but not during circumnutation. PLANT, CELL & ENVIRONMENT 2023; 46:1774-1784. [PMID: 36823722 DOI: 10.1111/pce.14575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 05/04/2023]
Abstract
Seedlings of the parasitic plant genus Cuscuta (dodder) locate hosts by circumnutation, coil around the host near soil level and form a haustorium, establishing a primary parasitism beneath the canopy. Mature shoots elongating from the parasitic region parasitize other hosts on the upper surfaces of their canopy. Although parasitism by dodder is stimulated by blue and far-red light, and inhibited by red light, the responses to light signals during the developmental stages are not comprehensively understood. Therefore, we compared the effects of different types of light on both circumnutation and parasitism by germinating seedlings and mature shoots of Cuscuta campestris. Seedlings established parasitism under blue and far-red light, but not under red light, as has been reported repeatedly. By contrast, mature shoots exhibited coiling around the host and haustoria formation even under a red light as well as under blue and far-red light. These findings indicate that C. campestris modified its response to red light during the transition from young seedlings to mature shoots, facilitating parasitism. Light quality did not affect the circumnutation of either seedlings or mature shoots, indicating that circumnutation and the coiling movement that leads to parasitism were regulated by different environmental signals.
Collapse
Affiliation(s)
- Toshiya Yokoyama
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Japan
| | - Mariko Asaoka
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Kazuhiko Nishitani
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Bawin T, Bruckmüller J, Olsen S, Krause K. A host-free transcriptome for haustoriogenesis in Cuscuta campestris: Signature gene expression identifies markers of successive development stages. PHYSIOLOGIA PLANTARUM 2022; 174:e13628. [PMID: 35048368 PMCID: PMC9313786 DOI: 10.1111/ppl.13628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 05/10/2023]
Abstract
The development of the infection organ of the parasitic angiosperm genus Cuscuta is a dynamic process that is normally obscured from view as it happens endophytically in its host. We artificially induced haustoriogenesis in Cuscuta campestris by far-red light to define specific morphologically different stages and analyze their transcriptional patterns. This information enabled us to extract sets of high-confidence housekeeping and marker genes for the different stages, validated in a natural infection setting on a compatible host. This study provides a framework for more reproducible investigations of haustoriogenesis and the processes governing host-parasite interactions in shoot parasites, with C. campestris as a model species.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Julien Bruckmüller
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Stian Olsen
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Kirsten Krause
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
8
|
Yokoyama R, Yokoyama T, Kuroha T, Park J, Aoki K, Nishitani K. Regulatory Modules Involved in the Degradation and Modification of Host Cell Walls During Cuscuta campestris Invasion. FRONTIERS IN PLANT SCIENCE 2022; 13:904313. [PMID: 35873971 PMCID: PMC9298654 DOI: 10.3389/fpls.2022.904313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2022] [Indexed: 05/13/2023]
Abstract
Haustoria of parasitic plants have evolved sophisticated traits to successfully infect host plants. The degradation and modification of host cell walls enable the haustorium to effectively invade host tissues. This study focused on two APETALA2/ETHYLENE RESPONSE FACTOR (ERF) genes and a set of the cell wall enzyme genes principally expressed during the haustorial invasion of Cuscuta campestris Yuncker. The orthogroups of the TF and cell wall enzyme genes have been implicated in the cell wall degradation and modification activities in the abscission of tomatoes, which are currently the phylogenetically closest non-parasitic model species of Cuscuta species. Although haustoria are generally thought to originate from root tissues, our results suggest that haustoria have further optimized invasion potential by recruiting regulatory modules from other biological processes.
Collapse
Affiliation(s)
- Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Ryusuke Yokoyama,
| | | | - Takeshi Kuroha
- Division of Crop Genome Editing Research, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jihwan Park
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | | |
Collapse
|
9
|
Bascos EMA, Fernando ES, Duya MV, Rodriguez LJV. Beginnings of a plant parasite: early development of Rafflesia consueloae inside its Tetrastigma host. PLANTA 2021; 254:61. [PMID: 34455499 DOI: 10.1007/s00425-021-03710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Extensive histology of host organs revealed the early events in the vegetative growth of Rafflesia consueloae including initial infection site, endophyte distribution, and other developmental events prior to bud emergence. The early events in the vegetative development of the holoparasite Rafflesia have long remained a mystery. Because its entire vegetative growth occurs within the host body, very little is known about the developmental events prior to emergence of the floral shoot. The goal of this study was to describe the events that occur during the vegetative growth of R. consueloae, particularly in the early stages of infection. We performed extensive microtome sectioning of multiple root and stem segments from different Tetrastigma host individuals to examine the cytology, distribution, and development of the R. consueloae endophyte within the host tissues. We found that R. consueloae infection is restricted to the roots of its host. Infection begins within the vascular cambium where the endophyte appears to initially reside prior to their radial spread to the vascular tissues. The tissues obtained from different host individuals had varying degrees of infection alluding to a possible role of host resistance mechanisms and/or varying levels of parasite infectiousness. Endophyte presence in host vines without external manifestations of infection indicates that the parasite may dwell within the host tissues for prolonged periods as small cell clusters without transitioning to the reproductive stage. Furthermore, we found that floral shoots may develop in scarcely infected host tissues indicating that extensive endophyte growth within the host is not a prerequisite to the onset of reproductive development. Overall, our study describes for the first time the developmental events prior to emergence of R. consueloae buds from its host.
Collapse
Affiliation(s)
- Erika Marie A Bascos
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| | - Edwino S Fernando
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- Diliman Science Research Foundation, 1101, Quezon City, Philippines
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños, Philippines
| | - Melizar V Duya
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- Diliman Science Research Foundation, 1101, Quezon City, Philippines
| | | |
Collapse
|