1
|
Zhu XT, Sanz-Jimenez P, Ning XT, Tahir Ul Qamar M, Chen LL. Direct RNA sequencing in plants: Practical applications and future perspectives. PLANT COMMUNICATIONS 2024; 5:101064. [PMID: 39155503 DOI: 10.1016/j.xplc.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The transcriptome serves as a bridge that links genomic variation to phenotypic diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) over the last 2 decades have emphasized the essential roles of the plant transcriptome in response to developmental and environmental conditions, providing numerous insights into the dynamic changes, evolutionary traces, and elaborate regulation of the plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for precise detection of native and full-length transcripts, overcoming many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we review recent advances in dissecting the complexity and diversity of plant transcriptomes using DRS as the main technological approach, covering many aspects of RNA metabolism, including novel isoforms, poly(A) tails, and RNA modification, and we propose a comprehensive workflow for processing of plant DRS data. Many challenges to the application of DRS in plants, such as the need for machine learning tools tailored to plant transcriptomes, remain to be overcome, and together we outline future biological questions that can be addressed by DRS, such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of the plant transcriptome.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Pablo Sanz-Jimenez
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Tong Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Li Q, Qiao X, Li L, Gu C, Yin H, Qi K, Xie Z, Yang S, Zhao Q, Wang Z, Yang Y, Pan J, Li H, Wang J, Wang C, Rieseberg LH, Zhang S, Tao S. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. PLANT COMMUNICATIONS 2024; 5:101000. [PMID: 38859586 DOI: 10.1016/j.xplc.2024.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties, 'Yuluxiang' (YLX) and 'Hongxiangsu' (HXS), which share the same maternal parent but differ in their paternal parents. We then used these assemblies to explore the genome-scale landscape of allele-specific expression (ASE) and create a pangenome graph for pear. ASE was observed for close to 6000 genes in both hybrid cultivars. A subset of ASE genes related to aspects of fruit quality such as sugars, organic acids, and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, is absent in the paternal haplotypes of HXS and YLX. A pangenome graph was built based on our assemblies and seven published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous structural variant hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, and this association was functionally validated by Ma1 overexpression in pear fruit and calli. Overall, these results reveal the contributions of ASE to fruit-quality heterosis and provide a robust pangenome reference for high-resolution allele discovery and association mapping.
Collapse
Affiliation(s)
- Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lanqing Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaijie Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhihua Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qifeng Zhao
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zewen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuhang Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahui Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongxiang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shutian Tao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
3
|
Wang F, Xi Z, Wang M, Wang L, Wang J. Genome-wide chromatin accessibility reveals transcriptional regulation of heterosis in inter-subspecific hybrid rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2331-2348. [PMID: 38976378 DOI: 10.1111/tpj.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zengde Xi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Linyou Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Crop and Nuclear Technology Utilization, Hangzhou, 310021, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Qi T, Wang M, Wang P, Wang L, Wang J. Insights into heterosis from histone modifications in the flag leaf of inter-subspecific hybrid rice. BMC PLANT BIOLOGY 2024; 24:767. [PMID: 39134930 PMCID: PMC11318154 DOI: 10.1186/s12870-024-05487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Inter-subspecific hybrid rice represents a significant breakthrough in agricultural genetics, offering higher yields and better resilience to various environmental stresses. While the utilization of these hybrids has shed light on the genetic processes underlying hybridization, understanding the molecular mechanisms driving heterosis remains a complex and ongoing challenge. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) was used to analyze genome-wide profiles of H3K4me3 and H3K27me3 modifications in the inter-subspecific hybrid rice ZY19 and its parents, Z04A and ZHF1015, then combined them with the transcriptome and DNA methylation data to uncover the effects of histone modifications on gene expression and the contribution of epigenetic modifications to heterosis. RESULTS In the hybrid, there were 8,126 and 1,610 different peaks for H3K4me3 and H3K27me3 modifications when compared to its parents, respectively, with the majority of them originating from the parental lines. The different modifications between the hybrid and its parents were more frequently observed as higher levels in the hybrid than in the parents. In ZY19, there were 476 and 84 allele-specific genes with H3K4me3 and H3K27me3 modifications identified, representing 7.9% and 12% of the total analyzed genes, respectively. Only a small portion of genes that showed differences in parental H3K4me3 and H3K27me3 modifications which demonstrated allele-specific histone modifications (ASHM) in the hybrid. The H3K4me3 modification level in the hybrid was significantly lower compared to the parents. In the hybrid, DNA methylation occurs more frequently among histone modification target genes. Additionally, over 62.58% of differentially expressed genes (DEGs) were affected by epigenetic variations. Notably, there was a strong correlation observed between variations in H3K4me3 modifications and gene expression levels in the hybrid and its parents. CONCLUSION These findings highlight the substantial impact of histone modifications and DNA methylation on gene expression during hybridization. Epigenetic variations play a crucial role in controlling the differential expression of genes, with potential implications for heterosis.
Collapse
Affiliation(s)
- Tianpu Qi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixuan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Linyou Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Lu A, Zeng S, Pi K, Long B, Mo Z, Liu R. Transcriptome analysis reveals the key role of overdominant expression of photosynthetic and respiration-related genes in the formation of tobacco(Nicotiana tabacum L.) biomass heterosis. BMC Genomics 2024; 25:598. [PMID: 38877410 PMCID: PMC11177473 DOI: 10.1186/s12864-024-10507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Leaves are the nutritional and economic organs of tobacco, and their biomass directly affects tobacco yield and the economic benefits of farmers. In the early stage, our research found that tobacco hybrids have more leaves and larger leaf areas, but the performance and formation reasons of biomass heterosis are not yet clear. RESULTS This study selected 5 parents with significant differences in tobacco biomass and paired them with hybrid varieties. It was found that tobacco hybrid varieties have a common biomass heterosis, and 45 days after transplantation is the key period for the formation of tobacco biomass heterosis; By analyzing the biomass heterosis of hybrids, Va116×GDH94 and its parents were selected for transcriptome analysis. 76.69% of the differentially expressed genes between Va116×GDH94 and its parents showed overdominant expression pattern, and these overdominant expression genes were significantly enriched in the biological processes of photosynthesis and TCA cycle; During the process of photosynthesis, the overdominant up-regulation of genes such as Lhc, Psa, and rbcl promotes the progress of photosynthesis, thereby increasing the accumulation of tobacco biomass; During the respiratory process, genes such as MDH, ACO, and OGDH are overedominantly down-regulated, inhibiting the TCA cycle and reducing substrate consumption in hybrid offspring; The photosynthetic characteristics of the hybrid and its parents were measured, and the net photosynthetic capacity of the hybrid was significantly higher than that of the parents. CONCLUSION These results indicate that the overdominant expression effect of differentially expressed genes in Va116×GDH94 and its parents plays a crucial role in the formation of tobacco biomass heterosis. The overdominant expression of genes related to photosynthesis and respiration enhances the photosynthetic ability of Va116×GDH94, reduces respiratory consumption, promotes the increase of biomass, and exhibits obvious heterosis.
Collapse
Affiliation(s)
- Anbin Lu
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Shuaibo Zeng
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Kai Pi
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Benshan Long
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Renxiang Liu
- College of Tobacco Science, Guizhou University, Guiyang, China.
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China.
| |
Collapse
|
6
|
Zhan W, Cui L, Yang S, Zhang K, Zhang Y, Yang J. Natural variations of heterosis-related allele-specific expression genes in promoter regions lead to allele-specific expression in maize. BMC Genomics 2024; 25:476. [PMID: 38745122 PMCID: PMC11092226 DOI: 10.1186/s12864-024-10395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.
Collapse
Affiliation(s)
- Weimin Zhan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lianhua Cui
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuling Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kangni Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanpei Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jianping Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Kakoulidou I, Johannes F. DNA methylation remodeling in F1 hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:671-681. [PMID: 36752648 DOI: 10.1111/tpj.16137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
F1 hybrids derived from a cross between two inbred parental lines often display widespread changes in DNA methylation patterns relative to their parents. To which extent these changes drive non-additive gene expression levels and phenotypic heterosis in F1 individuals is not fully resolved. Current mechanistic models propose that DNA methylation remodeling in hybrids is the result of epigenetic interactions between parental alleles via small interfering RNA (sRNA). These models have strong empirical support but are limited to genomic regions where the two parental lines differ in DNA methylation status. However, most remodeling events occur in parental regions with similar methylation patterns, and seem to be strongly conditioned by distally acting factors, even in isogenic hybrid systems. The molecular basis of these distal interactions is currently unknown, and will likely emerge as an active area of research in the future. Despite these gaps in our molecular understanding, parental DNA methylation states are statistically associated with heterosis, independent of genetic information, and may serve as biomarkers in crop breeding.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Plant Epigenomics, Technical University of Munich, Emil-Ramman-Str. 4, 85354, Freising, Germany
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich, Emil-Ramman-Str. 4, 85354, Freising, Germany
| |
Collapse
|
8
|
Shi TL, Jia KH, Bao YT, Nie S, Tian XC, Yan XM, Chen ZY, Li ZC, Zhao SW, Ma HY, Zhao Y, Li X, Zhang RG, Guo J, Zhao W, El-Kassaby YA, Müller N, Van de Peer Y, Wang XR, Street NR, Porth I, An X, Mao JF. High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar. PLANT PHYSIOLOGY 2024; 195:652-670. [PMID: 38412470 PMCID: PMC11060683 DOI: 10.1093/plphys/kiae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Poplar (Populus) is a well-established model system for tree genomics and molecular breeding, and hybrid poplar is widely used in forest plantations. However, distinguishing its diploid homologous chromosomes is difficult, complicating advanced functional studies on specific alleles. In this study, we applied a trio-binning design and PacBio high-fidelity long-read sequencing to obtain haplotype-phased telomere-to-telomere genome assemblies for the 2 parents of the well-studied F1 hybrid "84K" (Populus alba × Populus tremula var. glandulosa). Almost all chromosomes, including the telomeres and centromeres, were completely assembled for each haplotype subgenome apart from 2 small gaps on one chromosome. By incorporating information from these haplotype assemblies and extensive RNA-seq data, we analyzed gene expression patterns between the 2 subgenomes and alleles. Transcription bias at the subgenome level was not uncovered, but extensive-expression differences were detected between alleles. We developed machine-learning (ML) models to predict allele-specific expression (ASE) with high accuracy and identified underlying genome features most highly influencing ASE. One of our models with 15 predictor variables achieved 77% accuracy on the training set and 74% accuracy on the testing set. ML models identified gene body CHG methylation, sequence divergence, and transposon occupancy both upstream and downstream of alleles as important factors for ASE. Our haplotype-phased genome assemblies and ML strategy highlight an avenue for functional studies in Populus and provide additional tools for studying ASE and heterosis in hybrids.
Collapse
Affiliation(s)
- Tian-Le Shi
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kai-Hua Jia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China
| | - Yu-Tao Bao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
| | - Xue-Chan Tian
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue-Mei Yan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhao-Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Chao Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shi-Wei Zhao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai-Yao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiang Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Jing Guo
- College of Forestry, Shandong Agricultural University, Tai’an 271000, China
| | - Wei Zhao
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Yousry Aly El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Bc, V6T 1Z4, Canada
| | - Niels Müller
- Thünen-Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ru Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Nathaniel Robert Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jian-Feng Mao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
9
|
Li X, Zhu B, Lu Y, Zhao F, Liu Q, Wang J, Ye M, Chen S, Nie J, Xiong L, Zhao Y, Wu C, Zhou DX. DNA methylation remodeling and the functional implication during male gametogenesis in rice. Genome Biol 2024; 25:84. [PMID: 38566207 PMCID: PMC10985897 DOI: 10.1186/s13059-024-03222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Epigenetic marks are reprogrammed during sexual reproduction. In flowering plants, DNA methylation is only partially remodeled in the gametes and the zygote. However, the timing and functional significance of the remodeling during plant gametogenesis remain obscure. RESULTS Here we show that DNA methylation remodeling starts after male meiosis in rice, with non-CG methylation, particularly at CHG sites, being first enhanced in the microspore and subsequently decreased in sperm. Functional analysis of rice CHG methyltransferase genes CMT3a and CMT3b indicates that CMT3a functions as the major CHG methyltransferase in rice meiocyte, while CMT3b is responsible for the increase of CHG methylation in microspore. The function of the two histone demethylases JMJ706 and JMJ707 that remove H3K9me2 may contribute to the decreased CHG methylation in sperm. During male gametogenesis CMT3a mainly silences TE and TE-related genes while CMT3b is required for repression of genes encoding factors involved in transcriptional and translational activities. In addition, CMT3b functions to repress zygotic gene expression in egg and participates in establishing the zygotic epigenome upon fertilization. CONCLUSION Collectively, the results indicate that DNA methylation is dynamically remodeled during male gametogenesis, distinguish the function of CMT3a and CMT3b in sex cells, and underpin the functional significance of DNA methylation remodeling during rice reproduction.
Collapse
Affiliation(s)
- Xue Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Nie
- Vazyme Biotech Co., Ltd, Nanjing, 210000, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
10
|
Kakoulidou I, Piecyk RS, Meyer RC, Kuhlmann M, Gutjahr C, Altmann T, Johannes F. Mapping parental DMRs predictive of local and distal methylome remodeling in epigenetic F1 hybrids. Life Sci Alliance 2024; 7:e202402599. [PMID: 38290756 PMCID: PMC10828516 DOI: 10.26508/lsa.202402599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
F1 hybrids derived from a cross between two inbred parental lines often display widespread changes in DNA methylation and gene expression patterns relative to their parents. An emerging challenge is to understand how parental epigenomic differences contribute to these events. Here, we generated a large mapping panel of F1 epigenetic hybrids, whose parents are isogenic but variable in their DNA methylation patterns. Using a combination of multi-omic profiling and epigenetic mapping strategies we show that differentially methylated regions in parental pericentromeres act as major reorganizers of hybrid methylomes and transcriptomes, even in the absence of genetic variation. These parental differentially methylated regions are associated with hybrid methylation remodeling events at thousands of target regions throughout the genome, both locally (in cis) and distally (in trans). Many of these distally-induced methylation changes lead to nonadditive expression of nearby genes and associate with phenotypic heterosis. Our study highlights the pleiotropic potential of parental pericentromeres in the functional remodeling of hybrid genomes and phenotypes.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- https://ror.org/02kkvpp62 Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Robert S Piecyk
- https://ror.org/02kkvpp62 Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Rhonda C Meyer
- https://ror.org/02skbsp27 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Markus Kuhlmann
- https://ror.org/02skbsp27 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Thomas Altmann
- https://ror.org/02skbsp27 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank Johannes
- https://ror.org/02kkvpp62 Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- https://ror.org/02kkvpp62 Institute of Advanced Studies, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Liu B, Yang D, Wang D, Liang C, Wang J, Lisch D, Zhao M. Heritable changes of epialleles near genes in maize can be triggered in the absence of CHH methylation. PLANT PHYSIOLOGY 2024; 194:2511-2532. [PMID: 38109503 PMCID: PMC10980416 DOI: 10.1093/plphys/kiad668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Trans-chromosomal interactions resulting in changes in DNA methylation during hybridization have been observed in several plant species. However, little is known about the causes or consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are mutant for a small RNA biogenesis gene, Mop1 (Mediator of paramutation1), with that of their parents, wild-type siblings, and backcrossed progeny in maize (Zea mays). Our data show that hybridization triggers global changes in both trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60% of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM DMRs was largely lost in the mop1 mutant, although the effects of this mutant varied depending on the location of these DMRs. Interestingly, an increase in CHH at TCM DMRs was associated with enhanced expression of a subset of highly expressed genes and suppressed expression of a small number of lowly expressed genes. Examination of the methylation levels in backcrossed plants demonstrates that both TCM and TCdM can be maintained in the subsequent generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH methylation in most TCM DMRs in F1 plants required Mop1, initiation of a new epigenetic state of these DMRs did not require a functional copy of this gene, suggesting that initiation of these changes is independent of RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Dafang Wang
- Biology Department, Hofstra University, Hempstead, NY 11549, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Han L, Luo X, Zhao Y, Li N, Xu Y, Ma K. A haplotype-resolved genome provides insight into allele-specific expression in wild walnut (Juglans regia L.). Sci Data 2024; 11:278. [PMID: 38459062 PMCID: PMC10923786 DOI: 10.1038/s41597-024-03096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Wild germplasm resources are crucial for gene mining and molecular breeding because of their special trait performance. Haplotype-resolved genome is an ideal solution for fully understanding the biology of subgenomes in highly heterozygous species. Here, we surveyed the genome of a wild walnut tree from Gongliu County, Xinjiang, China, and generated a haplotype-resolved reference genome of 562.99 Mb (contig N50 = 34.10 Mb) for one haplotype (hap1) and 561.07 Mb (contig N50 = 33.91 Mb) for another haplotype (hap2) using PacBio high-fidelity (HiFi) reads and Hi-C technology. Approximately 527.20 Mb (93.64%) of hap1 and 526.40 Mb (93.82%) of hap2 were assigned to 16 pseudochromosomes. A total of 41039 and 39744 protein-coding gene models were predicted for hap1 and hap2, respectively. Moreover, 123 structural variations (SVs) were identified between the two haplotype genomes. Allele-specific expression genes (ASEGs) that respond to cold stress were ultimately identified. These datasets can be used to study subgenome evolution, for functional elite gene mining and to discover the transcriptional basis of specific traits related to environmental adaptation in wild walnut.
Collapse
Affiliation(s)
- Liqun Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xiang Luo
- College of Agriculture, Henan University, Zhengzhou, China
| | - Yu Zhao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Yuhui Xu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China.
| | - Kai Ma
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China.
| |
Collapse
|
13
|
Ren X, Chen L, Deng L, Zhao Q, Yao D, Li X, Cong W, Zang Z, Zhao D, Zhang M, Yang S, Zhang J. Comparative transcriptomic analysis reveals the molecular mechanism underlying seedling heterosis and its relationship with hybrid contemporary seeds DNA methylation in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1364284. [PMID: 38444535 PMCID: PMC10913200 DOI: 10.3389/fpls.2024.1364284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Heterosis is widely used in crop production, but phenotypic dominance and its underlying causes in soybeans, a significant grain and oil crop, remain a crucial yet unexplored issue. Here, the phenotypes and transcriptome profiles of three inbred lines and their resulting F1 seedlings were analyzed. The results suggest that F1 seedlings with superior heterosis in leaf size and biomass exhibited a more extensive recompilation in their transcriptional network and activated a greater number of genes compared to the parental lines. Furthermore, the transcriptional reprogramming observed in the four hybrid combinations was primarily non-additive, with dominant effects being more prevalent. Enrichment analysis of sets of differentially expressed genes, coupled with a weighted gene co-expression network analysis, has shown that the emergence of heterosis in seedlings can be attributed to genes related to circadian rhythms, photosynthesis, and starch synthesis. In addition, we combined DNA methylation data from previous immature seeds and observed similar recompilation patterns between DNA methylation and gene expression. We also found significant correlations between methylation levels of gene region and gene expression levels, as well as the discovery of 12 hub genes that shared or conflicted with their remodeling patterns. This suggests that DNA methylation in contemporary hybrid seeds have an impact on both the F1 seedling phenotype and gene expression to some extent. In conclusion, our study provides valuable insights into the molecular mechanisms of heterosis in soybean seedlings and its practical implications for selecting superior soybean varieties.
Collapse
Affiliation(s)
- Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Lin Deng
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Qiuzhu Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Weixuan Cong
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Dingyi Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Miao Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun, China
| |
Collapse
|
14
|
Liu W, He G, Deng XW. Toward understanding and utilizing crop heterosis in the age of biotechnology. iScience 2024; 27:108901. [PMID: 38533455 PMCID: PMC10964264 DOI: 10.1016/j.isci.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Heterosis, a universal phenomenon in nature, mainly reflected in the superior productivity, quality, and fitness of F1 hybrids compared with their inbred parents, has been exploited in agriculture and greatly benefited human society in terms of food security. However, the flexible and efficient utilization of heterosis has remained a challenge in hybrid breeding systems because of the limitations of "three-line" and "two-line" methods. In the past two decades, rapidly developed biotechnologies have provided unprecedented conveniences for both understanding and utilizing heterosis. Notably, "third-generation" (3G) hybrid breeding technology together with high-throughput sequencing and gene editing greatly promoted the efficiency of hybrid breeding. Here, we review emerging ideas about the genetic or molecular mechanisms of heterosis and the development of 3G hybrid breeding system in the age of biotechnology. In addition, we summarized opportunities and challenges for optimal heterosis utilization in the future.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Guangming He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
15
|
Liu Q, Ma X, Li X, Zhang X, Zhou S, Xiong L, Zhao Y, Zhou DX. Paternal DNA methylation is remodeled to maternal levels in rice zygote. Nat Commun 2023; 14:6571. [PMID: 37852973 PMCID: PMC10584822 DOI: 10.1038/s41467-023-42394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Epigenetic reprogramming occurs during reproduction to reset the genome for early development. In flowering plants, mechanistic details of parental methylation remodeling in zygote remain elusive. Here we analyze allele-specific DNA methylation in rice hybrid zygotes and during early embryo development and show that paternal DNA methylation is predominantly remodeled to match maternal allelic levels upon fertilization, which persists after the first zygotic division. The DNA methylation remodeling pattern supports the predominantly maternal-biased gene expression during zygotic genome activation (ZGA) in rice. However, parental allelic-specific methylations are reestablished at the globular embryo stage and associate with allelic-specific histone modification patterns in hybrids. These results reveal that paternal DNA methylation is remodeled to match the maternal pattern during zygotic genome reprogramming and suggest existence of a chromatin memory allowing parental allelic-specific methylation to be maintained in the hybrid.
Collapse
Affiliation(s)
- Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xue Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
16
|
Li M, Ou M, He X, Ye H, Ma J, Liu H, Yang H, Zhao P. DNA methylation role in subgenome expression dominance of Juglans regia and its wild relative J. mandshurica. PLANT PHYSIOLOGY 2023; 193:1313-1329. [PMID: 37403190 DOI: 10.1093/plphys/kiad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Subgenome expression dominance plays a crucial role in the environmental adaptation of polyploids. However, the epigenetic molecular mechanism underlying this process has not been thoroughly investigated, particularly in perennial woody plants. Persian walnut (Juglans regia) and its wild relative, Manchurian walnut (Juglans mandshurica), are woody plants of great economic importance and are both paleopolyploids that have undergone whole-genome duplication events. In this study, we explored the characteristics of subgenome expression dominance in these 2 Juglans species and examined its epigenetic basis. We divided their genomes into dominant subgenome (DS) and submissive subgenome (SS) and found that the DS-specific genes might play critical roles in biotic stress response or pathogen defense. We comprehensively elucidated the characteristics of biased gene expression, asymmetric DNA methylation, transposable elements (TEs), and alternative splicing (AS) events of homoeologous gene pairs between subgenomes. The results showed that biased expression genes (BEGs) in 2 Juglans species were mainly related to external stimuli response, while non-BEGs were related to complexes that might be involved in signal transduction. DS genes had higher expression and more AS events while having less DNA methylation and TEs than homoeologous genes from the SS in the 2 Juglans species. Further studies showed that DNA methylation might contribute to the biased expression of gene pairs by modifying LTR/TIR/nonTIR TEs and improving the AS efficiency of corresponding precursor mRNAs in a particular context. Our study contributes to understanding the epigenetic basis of subgenome expression dominance and the environmental adaptation of perennial woody plants.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mengwei Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiaozhou He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huijuan Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
17
|
Sun Y, Gao L, Meng X, Huang J, Guo J, Zhou X, Fu G, Xu Y, Firbank LG, Wang M, Ling N, Feng X, Shen Q, Guo S. Large-scale exploration of nitrogen utilization efficiency in Asia region for rice crop: Variation patterns and determinants. GLOBAL CHANGE BIOLOGY 2023; 29:5367-5378. [PMID: 37431724 DOI: 10.1111/gcb.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Improving rice nitrogen utilization efficiency (NUtE) is imperative to maximizing future food productivity while minimizing environmental threats, yet knowledge of its variation and the underlying regulatory factors is still lacking. Here, we integrated a dataset with 21,571 data compiled by available data from peer-reviewed literature and a large-scale field survey to address this knowledge gap. The overall results revealed great variations in rice NUtE, which were mainly associated with human activities, climate conditions, and rice variety. Specifically, N supply rate, temperature, and precipitation were the foremost determinants of rice NUtE, and NUtE responses to climatic change differed among rice varieties. Further prediction highlighted the improved rice NUtE with the increasing latitude or longitude. The indica and hybrid rice exhibited higher NUtE in low latitude regions compared to japonica and inbred rice, respectively. Collectively, our results evaluated the primary drivers of rice NUtE variations and predicted the geographic responses of NUtE in different varieties. Linking the global variations in rice NUtE with environmental factors and geographic adaptability provides valuable agronomic and ecological insights into the regulation of rice NUtE.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
- Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, Nanjing, China
| | - Xusheng Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jian Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xuan Zhou
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Guohai Fu
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Yang Xu
- National Agro-Tech Extension and Service Center, Beijing, China
| | | | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xumeng Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Fu C, Ma C, Zhu M, Liu W, Ma X, Li J, Liao Y, Liu D, Gu X, Wang H, Wang F. Transcriptomic and methylomic analyses provide insights into the molecular mechanism and prediction of heterosis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:139-154. [PMID: 36995901 DOI: 10.1111/tpj.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Heterosis has been widely used in multiple crops. However, the molecular mechanism and prediction of heterosis remains elusive. We generated five F1 hybrids [four showing better-parent heterosis (BPH) and one showing mid-parent heterosis], and performed the transcriptomic and methylomic analyses to identify the candidate genes for BPH and explore the molecular mechanism of heterosis and the potential predictors for heterosis. Transcriptomic results showed that most of the differentially expressed genes shared in the four better-parent hybrids were significantly enriched into the terms of molecular function, and the additive and dominant effects played crucial roles for BPH. DNA methylation level, especially in CG context, significantly and positively correlated with grain yield per plant. The ratios of differentially methylated regions in CG context in exons to transcription start sites between the parents exhibited significantly negative correlation with the heterosis levels of their hybrids, as was further confirmed in 24 pairwise comparisons of other rice lines, implying that this ratio could be a feasible predictor for heterosis level, and this ratio of less than 5 between parents in early growth stages might be a critical index for judging that their F1 hybrids would show BPH. Additionally, we identified some important genes showing differential expression and methylation, such as OsDCL2, Pi5, DTH2, DTH8, Hd1 and GLW7 in the four better-parent hybrids as the candidate genes for BPH. Our findings helped shed more light on the molecular mechanism and heterosis prediction.
Collapse
Affiliation(s)
- Chongyun Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Ce Ma
- Novogene Biotechnology Inc, Beijing, China
| | - Manshan Zhu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Wuge Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Xiaozhi Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Jinhua Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Yilong Liao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China, Ministry of Agriculture and Rural Affairs Beijing, China
| |
Collapse
|
19
|
Liu B, Yang D, Wang D, Liang C, Wang J, Lisch D, Zhao M. Heritable changes of epialleles in maize can be triggered in the absence of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537008. [PMID: 37131670 PMCID: PMC10153178 DOI: 10.1101/2023.04.15.537008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Trans-chromosomal interactions resulting in changes in DNA methylation during hybridization have been observed in several plant species. However, very little is known about the causes or consequences of these interactions. Here, we compared DNA methylomes of F1 hybrids that are mutant for a small RNA biogenesis gene, Mop1 (mediator of paramutation1) with that of their parents, wild type siblings, and backcrossed progeny in maize. Our data show that hybridization triggers global changes in both trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM), most of which involved changes in CHH methylation. In more than 60% of these TCM differentially methylated regions (DMRs) in which small RNAs are available, no significant changes in the quantity of small RNAs were observed. Methylation at the CHH TCM DMRs was largely lost in the mop1 mutant, although the effects of this mutant varied depending on the location of the CHH DMRs. Interestingly, an increase in CHH at TCM DMRs was associated with enhanced expression of a subset of highly expressed genes and suppressed expression of a small number of lowly expressed genes. Examination of the methylation levels in backcrossed plants demonstrates that TCM and TCdM can be maintained in the subsequent generation, but that TCdM is more stable than TCM. Surprisingly, although increased CHH methylation in F1 plants did require Mop1, initiation of the changes in the epigenetic state of TCM DMRs did not require a functional copy of this gene, suggesting that initiation of these changes is not dependent on RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH 45056
| | - Dafang Wang
- Biology Department, Hofstra University, Hempstead, NY 11549
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
20
|
Sun Z, Peng J, Lv Q, Ding J, Chen S, Duan M, He Q, Wu J, Tian Y, Yu D, Tan Y, Sheng X, Chen J, Sun X, Liu L, Peng R, Liu H, Zhou T, Xu N, Lou J, Yuan L, Wang B, Yuan D. Dissecting the genetic basis of heterosis in elite super-hybrid rice. PLANT PHYSIOLOGY 2023; 192:307-325. [PMID: 36755501 PMCID: PMC10152689 DOI: 10.1093/plphys/kiad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Y900 is one of the top hybrid rice (Oryza sativa) varieties, with its yield exceeding 15 t·hm-2. To dissect the mechanism of heterosis, we sequenced the male parent line R900 and female parent line Y58S using long-read and Hi-C technology. High-quality reference genomes of 396.41 Mb and 398.24 Mb were obtained for R900 and Y58S, respectively. Genome-wide variations between the parents were systematically identified, including 1,367,758 single-nucleotide polymorphisms, 299,149 insertions/deletions, and 4,757 structural variations. The level of variation between Y58S and R900 was the lowest among the comparisons of Y58S with other rice genomes. More than 75% of genes exhibited variation between the two parents. Compared with other two-line hybrids sharing the same female parent, the portion of Geng/japonica (GJ)-type genetic components from different male parents increased with yield increasing in their corresponding hybrids. Transcriptome analysis revealed that the partial dominance effect was the main genetic effect that constituted the heterosis of Y900. In the hybrid, both alleles from the two parents were expressed, and their expression patterns were dynamically regulated in different tissues. The cis-regulation was dominant for young panicle tissues, while trans-regulation was more common in leaf tissues. Overdominance was surprisingly prevalent in stems and more likely regulated by the trans-regulation mechanism. Additionally, R900 contained many excellent GJ haplotypes, such as NARROW LEAF1, Oryza sativa SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13, and Grain number, plant height, and heading date8, making it a good complement to Y58S. The fine-tuned mechanism of heterosis involves genome-wide variation, GJ introgression, key functional genes, and dynamic gene/allele expression and regulation pattern changes in different tissues and growth stages.
Collapse
Affiliation(s)
- Zhizhong Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | | | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Jia Ding
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Siyang Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiang He
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Tian
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dong Yu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiabing Sheng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jin Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuewu Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Rui Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tianshun Zhou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Na Xu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jianhang Lou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bingbing Wang
- Biobin Data Sciences Co., Ltd., Changsha 410221, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
21
|
Dong X, Luo H, Yao J, Guo Q, Yu S, Zhang X, Cheng X, Meng D. Characterization of Genes That Exhibit Genotype-Dependent Allele-Specific Expression and Its Implications for the Development of Maize Kernel. Int J Mol Sci 2023; 24:ijms24054766. [PMID: 36902194 PMCID: PMC10002780 DOI: 10.3390/ijms24054766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Heterosis or hybrid vigor refers to the superior phenotypic traits of hybrids relative to their parental inbred lines. An imbalance between the expression levels of two parental alleles in the F1 hybrid has been suggested as a mechanism of heterosis. Here, based on genome-wide allele-specific expression analysis using RNA sequencing technology, 1689 genes exhibiting genotype-dependent allele-specific expression (genotype-dependent ASEGs) were identified in the embryos, and 1390 genotype-dependent ASEGs in the endosperm, of three maize F1 hybrids. Of these ASEGs, most were consistent in different tissues from one hybrid cross, but nearly 50% showed allele-specific expression from some genotypes but not others. These genotype-dependent ASEGs were mostly enriched in metabolic pathways of substances and energy, including the tricarboxylic acid cycle, aerobic respiration, and energy derivation by oxidation of organic compounds and ADP binding. Mutation and overexpression of one ASEG affected kernel size, which indicates that these genotype-dependent ASEGs may make important contributions to kernel development. Finally, the allele-specific methylation pattern on genotype-dependent ASEGs indicated that DNA methylation plays a potential role in the regulation of allelic expression for some ASEGs. In this study, a detailed analysis of genotype-dependent ASEGs in the embryo and endosperm of three different maize F1 hybrids will provide an index of genes for future research on the genetic and molecular mechanism of heterosis.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiabin Yao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingfeng Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence:
| |
Collapse
|
22
|
Vinodh Kumar PN, Mallikarjuna MG, Jha SK, Mahato A, Lal SK, K R Y, Lohithaswa HC, Chinnusamy V. Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. Int J Biol Macromol 2023; 229:539-560. [PMID: 36603713 DOI: 10.1016/j.ijbiomac.2022.12.326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are the novel sugar transporters widely distributed among living systems. SWEETs play a crucial role in various bio-physiological processes, viz., plant developmental, nectar secretion, pollen development, and regulation of biotic and abiotic stresses, in addition to their prime sugar-transporting activity. Thus, in-depth structural, evolutionary, and functional characterization of maize SWEET transporters was performed for their utility in maize improvement. The mining of SWEET genes in the latest maize genome release (v.5) showed an uneven distribution of 20 ZmSWEETs. The comprehensive structural analyses and docking of ZmSWEETs with four sugars, viz., fructose, galactose, glucose, and sucrose, revealed frequent amino acid residues forming hydrogen (asparagine, valine, serine) and hydrophobic (tryptophan, glycine, and phenylalanine) interactions. Evolutionary analyses of SWEETs showed a mixed lineage with 50-100 % commonality of ortho-groups and -sequences evolved under strong purifying selection (Ka/Ks < 0.5). The duplication analysis showed non-functionalization (ZmSWEET18 in B73) and neo- and sub-functionalization (ZmSWEET3, ZmSWEET6, ZmSWEET9, ZmSWEET19, and ZmSWEET20) events in maize. Functional analyses of ZmSWEET genes through co-expression, in silico expression and qRT-PCR assays showed the relevance of ZmSWEETs expression in regulating drought, heat, and waterlogging stress tolerances in maize. The first ever ZmSWEET-regulatory network revealed 286 direct (ZmSWEET-TF: 140 ZmSWEET-miRNA: 146) and 1226 indirect (TF-TF: 597; TF-miRNA: 629) edges. The present investigation has given new insights into the complex transcriptional and post-transcriptional regulation and the regulatory and functional relevance of ZmSWEETs in assigning stress tolerance in maize.
Collapse
Affiliation(s)
- P N Vinodh Kumar
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | | | - Shailendra Kumar Jha
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anima Mahato
- ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | - Shambhu Krishan Lal
- School of Genetic Engineering, ICAR - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Yathish K R
- Winter Nursery Centre, ICAR-Indian Institute of Maize Research, Hyderabad, India
| | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
23
|
Ma X, Jia Q, Li S, Chen Z, Ming X, Zhao Y, Zhou DX. An enhanced network of energy metabolism, lysine acetylation, and growth-promoting protein accumulation is associated with heterosis in elite hybrid rice. PLANT COMMUNICATIONS 2023:100560. [PMID: 36774536 PMCID: PMC10363507 DOI: 10.1016/j.xplc.2023.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Heterosis refers to the superior performance of a hybrid compared with its parental lines. Although several genetic and molecular models have been proposed to explain heterosis, it remains unclear how hybrid cells integrate complementary gene expression or activity to drive heterotic growth. In this work, we show that accumulation of growth-promoting and energy metabolism proteins, enhanced energy metabolism activities, and increased protein lysine acetylation were associated with superior growth of the panicle meristem in the elite hybrid rice Shanyou 63 relative to its parental varieties. Metabolism of nuclear/cytosolic acetyl-coenzyme A was also enhanced in the hybrid, which paralleled increases in histone H3 acetylation to selectively target the expression of growth-promoting and metabolic genes. Lysine acetylation of cellular proteins, including TARGET OF RAPAMYCIN complex 1, ribosomal proteins, and energy metabolism enzymes, was also augmented and/or remodeled to modulate their activities. The data indicate that an enhanced network of energy-producing metabolic activity and growth-promoting histone acetylation/gene expression in the hybrid could contribute to its superior growth rate and may constitute a model to explain heterosis.
Collapse
Affiliation(s)
- Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingxiao Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Ming
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
24
|
Ma M, Zhong W, Zhang Q, Deng L, Wen J, Yi B, Tu J, Fu T, Zhao L, Shen J. Genome-wide analysis of transcriptome and histone modifications in Brassica napus hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1123729. [PMID: 36778699 PMCID: PMC9911877 DOI: 10.3389/fpls.2023.1123729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Although utilization of heterosis has largely improved the yield of many crops worldwide, the underlying molecular mechanism of heterosis, particularly for allopolyploids, remains unclear. Here, we compared epigenome and transcriptome data of an elite hybrid and its parental lines in three assessed tissues (seedling, flower bud, and silique) to explore their contribution to heterosis in allopolyploid B. napus. Transcriptome analysis illustrated that a small proportion of non-additive genes in the hybrid compared with its parents, as well as parental expression level dominance, might have a significant effect on heterosis. We identified histone modification (H3K4me3 and H3K27me3) variation between the parents and hybrid, most of which resulted from the differences between parents. H3K4me3 variations were positively correlated with gene expression differences among the hybrid and its parents. Furthermore, H3K4me3 and H3K27me3 were rather stable in hybridization and were mainly inherited additively in the B. napus hybrid. Together, our data revealed that transcriptome reprogramming and histone modification remodeling in the hybrid could serve as valuable resources for better understanding heterosis in allopolyploid crops.
Collapse
|
25
|
Wang P, Gu M, Yu X, Shao S, Du J, Wang Y, Wang F, Chen S, Liao Z, Ye N, Zhang X. Allele-specific expression and chromatin accessibility contribute to heterosis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1194-1211. [PMID: 36219505 DOI: 10.1111/tpj.16004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heterosis is extensively used to improve crop productivity, yet its allelic and chromatin regulation remains unclear. Based on our resolved genomes of the maternal TGY and paternal HD, we analyzed the contribution of allele-specific expression (ASE) and chromatin accessibility of JGY and HGY, the artificial hybrids of oolong tea with the largest cultivated area in China. The ASE genes (ASEGs) of tea hybrids with maternal-biased were mainly related to the energy and terpenoid metabolism pathways, whereas the ASEGs with paternal-biased tend to be enriched in glutathione metabolism, and these parental bias of hybrids may coordinate and lead to the acquisition of heterosis in more biological pathways. ATAC-seq results showed that hybrids have significantly higher accessible chromatin regions (ACRs) compared with their parents, which may confer broader and stronger transcriptional activity of genes in hybrids. The number of ACRs with significantly increased accessibility in hybrids was much greater than decreased, and the associated alleles were also affected by differential ACRs across different parents, suggesting enhanced positive chromatin regulation and potential genetic effects in hybrids. Core ASEGs of terpene and purine alkaloid metabolism pathways with significant positive heterosis have greater chromatin accessibility in hybrids, and were potentially regulated by several members of the MYB, DOF and TRB families. The binding motif of CsMYB85 in the promoter ACR of the rate-limiting enzyme CsDXS was verified by DAP-seq. These results suggest that higher numbers and more accessible ACRs in hybrids contribute to the regulation of ASEGs, thereby affecting the formation of heterotic metabolites.
Collapse
Affiliation(s)
- Pengjie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xikai Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shuxian Shao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Jiayin Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Feiquan Wang
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, 354300, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
26
|
Jaiswal V, Rawoof A, Gahlaut V, Ahmad I, Chhapekar SS, Dubey M, Ramchiary N. Integrated analysis of DNA methylation, transcriptome, and global metabolites in interspecific heterotic Capsicum F 1 hybrid. iScience 2022; 25:105318. [PMID: 36304106 PMCID: PMC9593261 DOI: 10.1016/j.isci.2022.105318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/04/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Hybrid breeding is one of the efficacious methods of crop improvement. Here, we report our work towards understanding the molecular basis of F1 hybrid heterosis from Capsicum chinense and C. frutescens cross. Bisulfite sequencing identified a total of 70597 CG, 108797 CHG, and 38418 CHH differentially methylated regions (DMRs) across F1 hybrid and parents, and of these, 4891 DMRs showed higher methylation in F1 compared to the mid-parental methylation values (MPMV). Transcriptome analysis showed higher expression of 46–55% differentially expressed genes (DE-Gs) in the F1 hybrid. The qRT-PCR analysis of 24 DE-Gs with negative promoter methylation revealed 91.66% expression similarity with the transcriptome data. A few metabolites and 65–72% enriched genes in metabolite biosynthetic pathways showed overall increased expression in the F1 hybrid compared to parents. These findings, taken together, provided insights into the integrated role of DNA methylation, and genes and metabolites expression in the manifestation of heterosis in Capsicum. Global methylation identified significantly different proportions of mCs in hybrid Of common DMRs, 33.08% showed different methylation in hybrid from the mid-parental value Negatively correlated DEG pDMR-genes were enriched in metabolic pathways Significant higher expression of metabolites and DE-Gs were identified in the F1 hybrid
Collapse
Affiliation(s)
- Vandana Jaiswal
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Corresponding author
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil S. Chhapekar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Horticulture, Chungnam National University, Daejeon 34134, South Korea
| | - Meenakshi Dubey
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Corresponding author
| |
Collapse
|
27
|
Wang Y, Xia J, Huang L, Lin Q, Cai Q, Xie H, He W, Wei Y, Xie H, Tang W, Wu W, Zhang J. Transcriptome Analyses Indicate Significant Association of Increased Non-Additive and Allele-Specific Gene Expression with Hybrid Weakness in Rice ( Oryza sativa L.). LIFE (BASEL, SWITZERLAND) 2022; 12:life12081278. [PMID: 36013457 PMCID: PMC9410013 DOI: 10.3390/life12081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
The heterosis in hybrid rice is highly affected by the environment and hybrid weakness occurs frequently depending on the genotypes of the hybrid and its parents. Hybrid weakness was also observed in our field experiments on nine rice hybrids produced by 3 × 3 incomplete diallel crosses. Among the nine hybrids, five displayed mid-parent heterosis (MPH) for grain yield per plant, while four showed mid-parent hybrid weakness (MPHW). A sequencing analysis of transcriptomes in panicles at the seed-filling stage revealed a significant association between enhanced non-additive gene expression (NAE) and allele-specific gene expression (ASE) with hybrid weakness. High proportions of ASE genes, with most being of mono-allele expression, were detected in the four MPHW hybrids, ranging from 22.65% to 45.97%; whereas only 4.80% to 5.69% of ASE genes were found in the five MPH hybrids. Moreover, an independence test indicated that the enhancements of NAE and ASE in the MPHW hybrids were significantly correlated. Based on the results of our study, we speculated that an unfavorable environment might cause hybrid weakness by enhancing ASE and NAE at the transcriptome level.
Collapse
Affiliation(s)
- Yingheng Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jing Xia
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Likun Huang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (W.T.); (W.W.); (J.Z.)
| | - Weiren Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.T.); (W.W.); (J.Z.)
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Correspondence: (W.T.); (W.W.); (J.Z.)
| |
Collapse
|
28
|
Chen L, Zhu Y, Ren X, Yao D, Song Y, Fan S, Li X, Zhang Z, Yang S, Zhang J, Zhang J. Heterosis and Differential DNA Methylation in Soybean Hybrids and Their Parental Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091136. [PMID: 35567137 PMCID: PMC9102035 DOI: 10.3390/plants11091136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 05/26/2023]
Abstract
Heterosis is an important biological phenomenon and is widely applied to increase agricultural productivity. However, the underlying molecular mechanisms of heterosis are still unclear. Here we constructed three combinations of reciprocal hybrids of soybean, and subsequently used MethylRAD-seq to detect CCGG and CCWGG (W = A or T) methylation in the whole genome of these hybrids and their parents at the middle development period of contemporary seed. We were able to prove that changes in DNA methylation patterns occurred in immature hybrid seeds and the parental variation was to some degree responsible for differential expression between the reciprocal hybrids. Non-additive differential methylation sites (DMSs) were also identified in large numbers in hybrids. Interestingly, most of these DMSs were hyper-methylated and were more concentrated in gene regions than the natural distribution of the methylated sites. Further analysis of the non-additive DMSs located in gene regions exhibited their participation in various biological processes, especially those related to transcriptional regulation and hormonal function. These results revealed DNA methylation reprogramming pattern in the hybrid soybean, which is associated with phenotypic variation and heterosis initiation.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Yanyu Zhu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yang Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Sujie Fan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Zhuo Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
- Department Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
29
|
Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics 2022; 49:385-393. [PMID: 35276387 DOI: 10.1016/j.jgg.2022.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subspecific hybrids often display higher heterosis. Using the elite hybrid Shanyou 63 as a model, an immortalized F2 population design is conducted for systematic characterization of the biological mechanism of heterosis, with identification of loci controlling heterosis of yield and yield component traits. Dominance, overdominance, and epistasis all play important roles in the genetic basis of heterosis; quantitative assessment of these components well addressed the three classical genetic hypotheses for heterosis. Environment-sensitive genic male sterility (EGMS) enables the development of two-line hybrids, and long noncoding RNAs often function as regulators of EGMS. Inter-subspecific hybrids show greatly reduced fertility; the identification and molecular characterization of hybrid sterility genes offer strategies for overcoming inter-subspecific hybrid sterility. These developments have significant implications for future hybrid rice improvement using genomic breeding.
Collapse
|
30
|
Li D, Lu X, Zhu Y, Pan J, Zhou S, Zhang X, Zhu G, Shang Y, Huang S, Zhang C. The multi-omics basis of potato heterosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:671-687. [PMID: 34963038 DOI: 10.1111/jipb.13211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Heterosis is a fundamental biological phenomenon characterized by the superior performance of hybrids over their parents. Although tremendous progress has been reported in seed crops, the molecular mechanisms underlying heterosis in clonally propagated crops are largely unknown. Potato (Solanum tuberosum L.) is the most important tuber crop and an ongoing revolution is transforming potato from a clonally propagated tetraploid crop into a seed-propagated diploid hybrid potato. In our previous study, we developed the first generation of highly homozygous inbred lines of potato and hybrids with strong heterosis. Here, we integrated transcriptome, metabolome, and DNA methylation data to explore the genetic and molecular basis of potato heterosis at three developmental stages. We found that the initial establishment of heterosis in diploid potato was mainly due to dominant complementation. Flower color, male fertility, and starch and sucrose metabolism showed obvious gene dominant complementation in hybrids, and hybrids devoted more energy to primary metabolism for rapid growth. In addition, we identified ~2 700 allele-specific expression genes at each stage, which likely function in potato heterosis and might be regulated by CHH allele-specific methylation level. Our multi-omics analysis provides insight into heterosis in potato and facilitates the exploitation of heterosis in potato breeding.
Collapse
Affiliation(s)
- Dawei Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Xiaoyue Lu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yanhui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Jun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Shaoqun Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Xinyan Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Sanwen Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| | - Chunzhi Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518172, China
| |
Collapse
|
31
|
Wu J, Sun D, Zhao Q, Yong H, Zhang D, Hao Z, Zhou Z, Han J, Zhang X, Xu Z, Li X, Li M, Weng J. Transcriptome Reveals Allele Contribution to Heterosis in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:739072. [PMID: 34630491 PMCID: PMC8494984 DOI: 10.3389/fpls.2021.739072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Heterosis, which has greatly increased maize yields, is associated with gene expression patterns during key developmental stages that enhance hybrid phenotypes relative to parental phenotypes. Before heterosis can be more effectively used for crop improvement, hybrid maize developmental gene expression patterns must be better understood. Here, six maize hybrids, including the popular hybrid Zhengdan958 (ZC) from China, were studied. Maize hybrids created in-house were generated using an incomplete diallel cross (NCII)-based strategy from four elite inbred parental lines. Differential gene expression (DEG) profiles corresponding to three developmental stages revealed that hybrid partial expression patterns exhibited complementarity of expression of certain parental genes, with parental allelic expression patterns varying both qualitatively and quantitatively in hybrids. Single-parent expression (SPE) and parent-specific expression (PSE) types of qualitative variation were most prevalent, 43.73 and 41.07% of variation, respectively. Meanwhile, negative super-dominance (NSD) and positive super-dominance (PSD) types of quantitative variation were most prevalent, 31.06 and 24.30% of variation, respectively. During the early reproductive growth stage, the gene expression pattern differed markedly from other developmental stage patterns, with allelic expression patterns during seed development skewed toward low-value parental alleles in hybrid seeds exhibiting significant quantitative variation-associated superiority. Comparisons of qualitative gene expression variation rates between ZC and other hybrids revealed proportions of SPE-DEGs (41.36%) in ZC seed DEGs that significantly exceeded the average proportion of SPE-DEGs found in seeds of other hybrids (28.36%). Importantly, quantitative gene expression variation rate comparisons between ZC and hybrids, except for transgressive expression, revealed that the ZC rate exceeded the average rate for other hybrids, highlighting the importance of partial gene expression in heterosis. Moreover, enriched ZC DEGs exhibiting distinct tissue-specific expression patterns belonged to four biological pathways, including photosynthesis, plant hormone signal transduction, biology metabolism and biosynthesis. These results provide valuable technical insights for creating hybrids exhibiting strong heterosis.
Collapse
Affiliation(s)
- Jianzhong Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Dequan Sun
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qian Zhao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaocong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhennan Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
33
|
Zebell S. Gene body silencing parental alleles for vigorous hybrid rice. PLANT PHYSIOLOGY 2021; 186:822-823. [PMID: 33787925 PMCID: PMC8195539 DOI: 10.1093/plphys/kiab136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Sophia Zebell
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|