1
|
Li Z, Jiang L, Long P, Wang C, Liu P, Hou F, Zhang M, Zou C, Huang Y, Ma L, Shen Y. A phased small interfering RNA-derived pathway mediates lead stress tolerance in maize. PLANT PHYSIOLOGY 2024; 196:1163-1179. [PMID: 39074204 DOI: 10.1093/plphys/kiae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Phased small interfering RNAs (phasiRNAs) are a distinct class of endogenous small interfering RNAs, which regulate plant growth, development, and environmental stress response. To determine the effect of phasiRNAs on maize (Zea mays L.) tolerance to lead (Pb) stress, the roots of 305 maize lines under Pb treatment were subjected to generation of individual databases of small RNAs. We identified 55 high-confidence phasiRNAs derived from 13 PHAS genes (genes producing phasiRNAs) in this maize panel, of which 41 derived from 9 PHAS loci were negatively correlated with Pb content in the roots. The potential targets of the 41 phasiRNAs were enriched in ion transport and import. Only the expression of PHAS_1 (ZmTAS3j, Trans-Acting Short Interference RNA3) was regulated by its cis-expression quantitative trait locus and thus affected the Pb content in the roots. Using the Nicotiana benthamiana transient expression system, 5'-rapid amplification of cDNA ends, and Arabidopsis heterologously expressed, we verified that ZmTAS3j was cleaved by zma-miR390 and thus generated tasiRNA targeting ARF genes (tasiARFs), and that the 5' and 3' zma-miR390 target sites of ZmTAS3j were both necessary for efficient biosynthesis and functional integrity of tasiARFs. We validated the involvement of the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-ZmHMA3 pathway in Pb accumulation in maize seedlings using genetic, molecular, and cytological methods. Moreover, the increased Pb tolerance in ZmTAS3j-overexpressed lines was likely attributed to the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-SAURs pathway, which elevated indole acetic acid levels and thus reactive oxygen species-scavenging capacity in maize roots. Our study reveals the importance of the TAS3-derived tasiRNA pathway in plant adaptation to Pb stress.
Collapse
Affiliation(s)
- Zhaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Li Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengxia Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Minyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongcai Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Gu X, Si F, Feng Z, Li S, Liang D, Yang P, Yang C, Yan B, Tang J, Yang Y, Li T, Li L, Zhou J, Li J, Feng L, Liu JY, Yang Y, Deng Y, Wu XN, Zhao Z, Wan J, Cao X, Song X, He Z, Liu J. The OsSGS3-tasiRNA-OsARF3 module orchestrates abiotic-biotic stress response trade-off in rice. Nat Commun 2023; 14:4441. [PMID: 37488129 PMCID: PMC10366173 DOI: 10.1038/s41467-023-40176-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Recurrent heat stress and pathogen invasion seriously threaten crop production, and abiotic stress often antagonizes biotic stress response against pathogens. However, the molecular mechanisms of trade-offs between thermotolerance and defense remain obscure. Here, we identify a rice thermo-sensitive mutant that displays a defect in floret development under high temperature with a mutation in SUPPRESSOR OF GENE SILENCING 3a (OsSGS3a). OsSGS3a interacts with its homolog OsSGS3b and modulates the biogenesis of trans-acting small interfering RNA (tasiRNA) targeting AUXIN RESPONSE FACTORS (ARFs). We find that OsSGS3a/b positively, while OsARF3a/b and OsARF3la/lb negatively modulate thermotolerance. Moreover, OsSGS3a negatively, while OsARF3a/b and OsARF3la/lb positively regulate disease resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and the fungal pathogen Magnaporthe oryzae (M. oryzae). Taken together, our study uncovers a previously unknown trade-off mechanism that regulates distinct immunity and thermotolerance through the OsSGS3-tasiRNA-OsARF3 module, highlighting the regulation of abiotic-biotic stress response trade-off in plants.
Collapse
Affiliation(s)
- Xueting Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhengxiang Feng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shunjie Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Di Liang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Pei Yang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jun Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yu Yang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Tai Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Lin Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Jinling Zhou
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ji Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lili Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ji-Yun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yuanzhu Yang
- Department of Rice Breeding, Hunan Yahua Seed Scientific Research Institute, 410119, Changsha, Hunan, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xu Na Wu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Junzhong Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
| |
Collapse
|
3
|
Song X, Xiong Y, Kong X, Huang G. Roles of auxin response factors in rice development and stress responses. PLANT, CELL & ENVIRONMENT 2023; 46:1075-1086. [PMID: 36397176 DOI: 10.1111/pce.14494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Auxin signalling plays a key role in various developmental processes ranging from embryogenesis to senescence in plants. Auxin response factor (ARF), a key component of auxin signalling, functions by binding to auxin response element within promoter of auxin response genes, activating or repressing the target genes. Increasing evidences show that ARFs are crucial for plant response to stresses. This review summarises the recent advance on the functions and their regulatory pathways of rice ARFs in development and responding to stresses. The importance of OsARFs is demonstrated by their roles in triggering various physiological, biochemical and molecular reactions to resist adverse environmental conditions. We also describe the transcriptional and post-transcriptional regulation of OsARFs, and discuss the major challenges in this area.
Collapse
Affiliation(s)
- Xiaoyun Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Xiong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuzhen Kong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Ma J, Li C, Gao P, Qiu Y, Zong M, Zhang H, Wang J. Melon shoot organization 1, encoding an AGRONAUTE7 protein, plays a crucial role in plant development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2875-2890. [PMID: 35802144 DOI: 10.1007/s00122-022-04156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A melon gene MSO1 located on chromosome 10 by map-based cloning strategy, which encodes an ARGONAUTE 7 protein, is responsible for the development of shoot organization. Plant endogenous small RNAs (sRNAs) are involved in various plant developmental processes. In Arabidopsis, sRNAs combined with ARGONAUTE (AGO) proteins are incorporated into the RNA-induced silencing complex (RISC), which functions in RNA silencing or biogenesis of trans-acting siRNAs (ta-siRNAs). However, their roles in melon (Cucumis melo L.) are still unclear. Here, the melon shoot organization 1 (mso1) mutant was identified and shown to exhibit pleiotropic phenotypes in leaf morphology and plant architecture. Positional cloning of MSO1 revealed that it encodes a homologue of Arabidopsis AGO7/ZIPPY, which is required for the production of ta-siRNAs. The AG-to-C mutation in the second exon of MSO1 caused a frameshift mutation and significantly reduced its expression. Ectopic expression of MSO1 rescued the Arabidopsis ago7 phenotype. RNA-seq analysis showed that several genes involved in transcriptional regulation and plant hormones were significantly altered in mso1 compared to WT. A total of 304 and 231 miRNAs were identified in mso1 and WT by sRNA sequencing, respectively, and among them, 42 known and ten novel miRNAs were differentially expressed. cme-miR390a significantly accumulated, and the expression levels of the two ta-siRNAs were almost completely abolished in mso1. Correspondingly, their targets, the ARF3 and ARF4 genes, showed dramatically upregulated expression, indicating that the miR390-TAS3-ARF pathway has conserved roles in melon. These findings will help us better understand the molecular mechanisms of MSO1 in plant development in melon.
Collapse
Affiliation(s)
- Jian Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Congcong Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peng Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanhong Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mei Zong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, China.
| | - Jianshe Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|