1
|
Zhu Y, Sun Z, Wu H, Cui C, Meng S, Xu C. Transcriptomic Analysis of the Molecular Mechanism Potential of Grafting-Enhancing the Ability of Oriental Melon to Tolerate Low-Nitrogen Stress. Int J Mol Sci 2024; 25:8227. [PMID: 39125797 PMCID: PMC11311868 DOI: 10.3390/ijms25158227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Nitrogen is the primary nutrient for plants. Low nitrogen generally affects plant growth and fruit quality. Melon, as an economic crop, is highly dependent on nitrogen. However, the response mechanism of its self-rooted and grafted seedlings to low-nitrogen stress has not been reported previously. Therefore, in this study, we analyzed the transcriptional differences between self-rooted and grafted seedlings under low-nitrogen stress using fluorescence characterization and RNA-Seq analysis. It was shown that low-nitrogen stress significantly inhibited the fluorescence characteristics of melon self-rooted seedlings. Analysis of differentially expressed genes showed that the synthesis of genes related to hormone signaling, such as auxin and brassinolide, was delayed under low-nitrogen stress. Oxidative stress response, involved in carbon and nitrogen metabolism, and secondary metabolite-related differentially expressed genes (DEGs) were significantly down-regulated. It can be seen that low-nitrogen stress causes changes in many hormonal signals in plants, and grafting can alleviate the damage caused by low-nitrogen stress on plants, ameliorate the adverse effects of nitrogen stress on plants, and help them better cope with environmental stresses.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Ziqing Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongxi Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Caifeng Cui
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang Agricultural University, Shenyang 110866, China
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Chai G, Liu H, Zhang Y, Wang C, Xu H, He G, Meng J, Tang X, Wang D, Zhou G. Integration of C3H15-mediated transcriptional and post-transcriptional regulation confers plant thermotolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38865085 DOI: 10.1111/tpj.16877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024]
Abstract
Heat stress is an environmental factor that significantly threatens crop production worldwide. Nevertheless, the molecular mechanisms governing plant responses to heat stress are not fully understood. Plant zinc finger CCCH proteins have roles in stress responses as well as growth and development through protein-RNA, protein-DNA, and protein-protein interactions. Here, we reveal an integrated multi-level regulation of plant thermotolerance that is mediated by the CCCH protein C3H15 in Arabidopsis. Heat stress rapidly suppressed C3H15 transcription, which attenuated C3H15-inhibited expression of its target gene HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), a central regulator of heat stress response (HSR), thereby activating HEAT SHOCK COGNATE 70 (HSC70.3) expression. The RING-type E3 ligase MED25-BINDING RING-H2 PROTEIN 2 (MBR2) was identified as an interacting partner of C3H15. The mbr2 mutant was susceptible to heat stress compared to wild-type plants, whereas plants overexpressing MBR2 showed increased heat tolerance. MBR2-dependent ubiquitination mediated the degradation of phosphorylated C3H15 protein in the cytoplasm, which was enhanced by heat stress. Consistently, heat sensitivities of C3H15 overexpression lines increased in MBR2 loss-of-function and decreased in MBR2 overexpression backgrounds. Heat stress-induced accumulation of HSC70.3 promoted MBR2-mediated degradation of C3H15 protein, implying that an auto-regulatory loop involving C3H15, HSFA2, and HSC70.3 regulates HSR. Heat stress also led to the accumulation of C3H15 in stress granules (SGs), a kind of cytoplasmic RNA granule. This study advances our understanding of the mechanisms plants use to respond to heat stress, which will facilitate technologies to improve thermotolerance in crops.
Collapse
Affiliation(s)
- Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257000, China
| | - Huanhuan Liu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Tianjin Normal University, Tianjin, 300387, China
| | - Congpeng Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hua Xu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guo He
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jie Meng
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xianfeng Tang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dian Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257000, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gongke Zhou
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
3
|
Wu G, Wang W. Recent advances in understanding the role of two mitogen-activated protein kinase cascades in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2256-2265. [PMID: 38241698 DOI: 10.1093/jxb/erae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The mitogen-activated protein kinase (MAPK/MPK) cascade is an important intercellular signaling module that regulates plant growth, development, reproduction, and responses to biotic and abiotic stresses. A MAPK cascade usually consists of a MAPK kinase kinase (MAPKKK/MEKK), a MAPK kinase (MAPKK/MKK/MEK), and a MAPK. The well-characterized MAPK cascades in plant immunity to date are the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade. Recently, major breakthroughs have been made in understanding the molecular mechanisms associated with the regulation of immune signaling by both of these MAPK cascades. In this review, we highlight the most recent advances in understanding the role of both MAPK cascades in activating plant defense and in suppressing or fine-tuning immune signaling. We also discuss the molecular mechanisms by which plants stabilize and maintain the activation of MAPK cascades during immune signaling. Based on this review, we reveal the complexity and importance of the MEKK1-MKK1/2-MPK4 cascade and the MAPKKK3/4/5-MKK4/5-MPK3/6 cascade, which are tightly controlled by their interacting partners or substrates, in plant immunity.
Collapse
Affiliation(s)
- Guangheng Wu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Zhuang Y, Chen Y, Wang Q, Chen Y, Yan L, Li S, Zhou G, Chai G. Ectopic expression of TTP gene from human in poplar promotes xylem differentiation and confers plant drought tolerance. FORESTRY RESEARCH 2024; 4:e011. [PMID: 39524418 PMCID: PMC11524242 DOI: 10.48130/forres-0024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 11/16/2024]
Abstract
The CCCH zinc finger proteins play critical roles in a wide variety of growth, development, and stress responses. Currently, limited reports are available about the roles of animal CCCH proteins in plants. In this study, we report the identification of human TTP (hTTP) with functional similarity to PdC3H17 in a hybrid poplar. hTTP and PdC3H17 shared highly similar tandem CCCH zinc-finger RNA-binding domains. The fragments excluding the CCCH domain of both hTTP and PdC3H17 possessed transcriptional activation activities in yeast cells. Compared to the controls, ectopic expression of hTTP in poplar caused dwarfism, and resulted in significant increases in stem xylem vessel number and photosynthetic and ROS-scavenging abilities, thereby enhancing plant tolerance to drought stress. Our results suggest that hTTP may perform a function in poplar through the PdC3H17-mediated system, and provide an example for the application of animal genes in plants.
Collapse
Affiliation(s)
- Yamei Zhuang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shangdong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yang Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiao Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| | - Yan Chen
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shangdong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Gongke Zhou
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| |
Collapse
|
5
|
Fu Q, Yang J, Zhang K, Yin K, Xiang G, Yin X, Liu G, Xu Y. Plasmopara viticola effector PvCRN11 induces disease resistance to downy mildew in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:873-891. [PMID: 37950600 DOI: 10.1111/tpj.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.
Collapse
Affiliation(s)
- Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kaixin Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
6
|
Wang Z, Li X, Yao X, Ma J, Lu K, An Y, Sun Z, Wang Q, Zhou M, Qin L, Zhang L, Zou S, Chen L, Song C, Dong H, Zhang M, Chen X. MYB44 regulates PTI by promoting the expression of EIN2 and MPK3/6 in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100628. [PMID: 37221824 PMCID: PMC10721452 DOI: 10.1016/j.xplc.2023.100628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
The plant signaling pathway that regulates pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) involves mitogen-activated protein kinase (MAPK) cascades that comprise sequential activation of several protein kinases and the ensuing phosphorylation of MAPKs, which activate transcription factors (TFs) to promote downstream defense responses. To identify plant TFs that regulate MAPKs, we investigated TF-defective mutants of Arabidopsis thaliana and identified MYB44 as an essential constituent of the PTI pathway. MYB44 confers resistance against the bacterial pathogen Pseudomonas syringae by cooperating with MPK3 and MPK6. Under PAMP treatment, MYB44 binds to the promoters of MPK3 and MPK6 to activate their expression, leading to phosphorylation of MPK3 and MPK6 proteins. In turn, phosphorylated MPK3 and MPK6 phosphorylate MYB44 in a functionally redundant manner, thus enabling MYB44 to activate MPK3 and MPK6 expression and further activate downstream defense responses. Activation of defense responses has also been attributed to activation of EIN2 transcription by MYB44, which has previously been shown to affect PAMP recognition and PTI development. AtMYB44 thus functions as an integral component of the PTI pathway by connecting transcriptional and posttranscriptional regulation of the MPK3/6 cascade.
Collapse
Affiliation(s)
- Zuodong Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China
| | - Jinbiao Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Wang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Miao Zhou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Congfeng Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hansong Dong
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; Qilu College, Shandong Agricultural University, Taian 271018, China.
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaochen Chen
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
7
|
Wu Z, Liang J, Li T, Zhang D, Teng N. A LlMYB305-LlC3H18-LlWRKY33 module regulates thermotolerance in lily. MOLECULAR HORTICULTURE 2023; 3:15. [PMID: 37789438 PMCID: PMC10514960 DOI: 10.1186/s43897-023-00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/05/2023]
Abstract
The CCCH proteins play important roles in plant growth and development, hormone response, pathogen defense and abiotic stress tolerance. However, the knowledge of their roles in thermotolerance are scarce. Here, we identified a heat-inducible CCCH gene LlC3H18 from lily. LlC3H18 was localized in the cytoplasm and nucleus under normal conditions, while it translocated in the cytoplasmic foci and co-located with the markers of two messenger ribonucleoprotein (mRNP) granules, processing bodies (PBs) and stress granules (SGs) under heat stress conditions, and it also exhibited RNA-binding ability. In addition, LlC3H18 exhibited transactivation activity in both yeast and plant cells. In lily and Arabidopsis, overexpression of LlC3H18 damaged their thermotolerances, and silencing of LlC3H18 in lily also impaired its thermotolerance. Similarly, Arabidopsis atc3h18 mutant also showed decreased thermotolerance. These results indicated that the appropriate expression of C3H18 was crucial for establishing thermotolerance. Further analysis found that LlC3H18 directly bound to the promoter of LlWRKY33 and activated its expression. Besides, it was found that LlMYB305 acted as an upstream factor of LlC3H18 and activated its expression. In conclusion, we demonstrated that there may be a LlMYB305-LlC3H18-LlWRKY33 regulatory module in lily that is involved in the establishment of thermotolerance and finely regulates heat stress response.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing, 210043, China.
| |
Collapse
|
8
|
Hormone Regulation of CCCH Zinc Finger Proteins in Plants. Int J Mol Sci 2022; 23:ijms232214288. [PMID: 36430765 PMCID: PMC9698766 DOI: 10.3390/ijms232214288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
CCCH zinc finger proteins contain one to six tandem CCCH motifs composed of three cysteine and one histidine residues and have been widely found in eukaryotes. Plant CCCH proteins control a wide range of developmental and adaptive processes through DNA-protein, RNA-protein and/or protein-protein interactions. The complex networks underlying these processes regulated by plant CCCH proteins are often involved in phytohormones as signal molecules. In this review, we described the evolution of CCCH proteins from green algae to vascular plants and summarized the functions of plant CCCH proteins that are influenced by six major hormones, including abscisic acid, gibberellic acid, brassinosteroid, jasmonate, ethylene and auxin. We further compared the regulatory mechanisms of plant and animal CCCH proteins via hormone signaling. Among them, Arabidopsis AtC3H14, 15 and human hTTP, three typical CCCH proteins, are able to integrate multiple hormones to participate in various biological processes.
Collapse
|
9
|
Chen J. Need help? Recently identified phosphorylation targets of MAP kinase 4 aid plant immunity. PLANT PHYSIOLOGY 2022; 190:1556-1558. [PMID: 35944224 PMCID: PMC9614446 DOI: 10.1093/plphys/kiac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|