1
|
Caseys C, Muhich AJ, Vega J, Ahmed M, Hopper A, Kelly D, Kim S, Madrone M, Plaziak T, Wang M, Kliebenstein DJ. Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39367581 DOI: 10.1111/tpj.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how Botrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 B. cinerea strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf-Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Anna Jo Muhich
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| | - Josue Vega
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Maha Ahmed
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Aleshia Hopper
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - David Kelly
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Sydney Kim
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Matisse Madrone
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Taylor Plaziak
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Melissa Wang
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Müller T, Bronkhorst J, Müller J, Safari N, Hahn M, Sprakel J, Scheuring D. Plant infection by the necrotrophic fungus Botrytis requires actin-dependent generation of high invasive turgor pressure. THE NEW PHYTOLOGIST 2024; 244:192-201. [PMID: 39107894 DOI: 10.1111/nph.20025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
The devastating pathogen Botrytis cinerea infects a broad spectrum of host plants, causing great socio-economic losses. The necrotrophic fungus rapidly kills plant cells, nourishing their wall and cellular contents. To this end, necrotrophs secrete a cocktail of cell wall degrading enzymes, phytotoxic proteins and metabolites. Additionally, many fungi produce specialized invasion organs that generate high invasive pressures to force their way into the plant cell. However, for most necrotrophs, including Botrytis, the biomechanics of penetration and its contribution to virulence are poorly understood. Here, we use a combination of quantitative micromechanical imaging and CRISPR-Cas-guided mutagenesis to show that Botrytis uses substantial invasive pressure, in combination with strong surface adherence, for penetration. We found that the fungus establishes a unique mechanical geometry of penetration that develops over time during penetration events, and which is actin cytoskeleton dependent. Furthermore, interference of force generation by blocking actin polymerization was found to decrease Botrytis virulence, indicating that also for necrotrophs, mechanical pressure is important in host colonization. Our results demonstrate for the first time mechanistically how a necrotrophic fungus such as Botrytis employs this 'brute force' approach, in addition to the secretion of lytic proteins and phytotoxic metabolites, to overcome plant host resistance.
Collapse
Affiliation(s)
- Tobias Müller
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Jochem Bronkhorst
- Green Mechanobiology, Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jonas Müller
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Nassim Safari
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Matthias Hahn
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Joris Sprakel
- Green Mechanobiology, Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - David Scheuring
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
3
|
Qiu C, Zhang H, Liu Z. Alternaria solani core effector Aex59 is a new member of the Alt a 1 protein family and is recognized as a PAMP. Int J Biol Macromol 2024; 278:134918. [PMID: 39179073 DOI: 10.1016/j.ijbiomac.2024.134918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Early blight caused by Alternaria solani is a destructive disease in potato production. Here, through systematically screening of an effector protein pool consisting of 115 small cysteine-containing candidate Aex (Alternariaextracellular proteins) in A. solani, we identified a core effector protein named Aex59, a pathogen-associated molecular pattern (PAMP) molecule. Aex59 is uniquely present in the Ascomycota of fungi and can activate defense responses in multiple plants. Targeted gene disruption showed that Aex59 is a virulence factor and participates in spore development. Perception of Aex59 in Nicotiana benthamiana does not depend on the receptor-like kinases Brassinosteroid-associated kinase1 (BAK1) and Suppressor of BIR1-1 (SOBIR1), which are required for multiple pattern recognition receptors (PRR) pathways. Sequence analysis revealed that Aex59 is a new member of the Alt a 1 protein family and is a potential molecular marker capable of aiding in the classification of the fungi Alternaria spp.
Collapse
Affiliation(s)
- Chaodong Qiu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huajian Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui 230036, China
| | - Zhenyu Liu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Rahman MU, Liu X, Wang X, Fan B. Grapevine gray mold disease: infection, defense and management. HORTICULTURE RESEARCH 2024; 11:uhae182. [PMID: 39247883 PMCID: PMC11374537 DOI: 10.1093/hr/uhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Grapevine (Vitis vinifera L.,) is among the world's leading fruit crops. The production of grapes is severely affected by many diseases including gray mold, caused by the necrotrophic fungus Botrytis cinerea. Although all Vitis species can be hosts for B. cinerea, V. vinifera are particularly susceptible. Accordingly, this disease poses a significant threat to the grape industry and causes substantial economic losses. Development of resistant V. vinifera cultivars has progressed from incidental selection by farmers, to targeted selection through the use of statistics and experimental design, to the employment of genetic and genomic data. Emerging technologies such as marker-assisted selection and genetic engineering have facilitated the development of cultivars that possess resistance to B. cinerea. A promising method involves using the CRISPR/Cas9 system to induce targeted mutagenesis and develop genetically modified non-transgenic crops. Hence, scientists are now engaged in the active pursuit of identifying genes associated with susceptibility and resistance. This review focuses on the known mechanisms of interaction between the B. cinerea pathogen and its grapevine host. It also explores innate immune systems that have evolved in V. vinifera, with the objective of facilitating the rapid development of resistant grapevine cultivars.
Collapse
Affiliation(s)
- Mati Ur Rahman
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xia Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100 Yangling, Xianyang, Shaanxi, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| |
Collapse
|
5
|
Tominello-Ramirez CS, Muñoz Hoyos L, Oubounyt M, Stam R. Network analyses predict major regulators of resistance to early blight disease complex in tomato. BMC PLANT BIOLOGY 2024; 24:641. [PMID: 38971719 PMCID: PMC11227178 DOI: 10.1186/s12870-024-05366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.
Collapse
Affiliation(s)
- Christopher S Tominello-Ramirez
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lina Muñoz Hoyos
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany.
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
6
|
Li W, Li P, Deng Y, Zhang Z, Situ J, Huang J, Li M, Xi P, Jiang Z, Kong G. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii. THE NEW PHYTOLOGIST 2024; 242:2682-2701. [PMID: 38622771 DOI: 10.1111/nph.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zijing Zhang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Xiong J, Luo M, Chen Y, Hu Q, Fang Y, Sun T, Hu G, Zhang CJ. Subtilisin-like proteases from Fusarium graminearum induce plant cell death and contribute to virulence. PLANT PHYSIOLOGY 2024; 195:1681-1693. [PMID: 38478507 DOI: 10.1093/plphys/kiae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/02/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.
Collapse
Affiliation(s)
- Jiang Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingyu Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yunshen Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Zhang X, Zhang Z, Chen T, Chen Y, Li B, Tian S. Characterization of two SGNH family cell death-inducing proteins from the horticulturally important fungal pathogen Botrytis cinerea based on the optimized prokaryotic expression system. MOLECULAR HORTICULTURE 2024; 4:9. [PMID: 38449027 PMCID: PMC10919021 DOI: 10.1186/s43897-024-00086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Botrytis cinerea is one of the most destructive phytopathogenic fungi, causing significant losses to horticultural crops. As a necrotrophic fungus, B. cinerea obtains nutrients by killing host cells. Secreted cell death-inducing proteins (CDIPs) play a crucial role in necrotrophic infection; however, only a limited number have been reported. For high-throughput CDIP screening, we optimized the prokaryotic expression system and compared its efficiency with other commonly used protein expression systems. The optimized prokaryotic expression system showed superior effectiveness and efficiency and was selected for subsequent CDIP screening. The screening system verified fifty-five candidate proteins and identified two novel SGNH family CDIPs: BcRAE and BcFAT. BcRAE and BcFAT exhibited high expression levels throughout the infection process. Site-directed mutagenesis targeting conserved Ser residues abolished the cell death-inducing activity of both BcRAE and BcFAT. Moreover, the transient expression of BcRAE and BcFAT in plants enhanced plant resistance against B. cinerea without inducing cell death, independent of their enzymatic activities. Our results suggest a high-efficiency screening system for high-throughput CDIP screening and provide new targets for further study of B. cinerea-plant interactions.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Liang Y, Bi K, Sharon A. The Botrytis cinerea transglycosylase BcCrh4 is a cell death-inducing protein with cell death-promoting and -suppressing domains. PLANT, CELL & ENVIRONMENT 2024; 47:354-371. [PMID: 37846876 DOI: 10.1111/pce.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Botrytis cinerea is a necrotrophic fungal plant pathogen that causes grey mould and rot diseases in many crops. Here, we show that the B. cinerea BcCrh4 transglycosylase is secreted during plant infection and induces plant cell death and pattern-triggered immunity (PTI), fulfilling the characteristics of a cell death-inducing protein (CDIP). The CDIP activity of BcCrh4 is independent of the transglycosylase enzymatic activity, it takes place in the apoplast and does not involve the receptor-like kinases BAK1 and SOBIR1. During saprophytic growth, BcCrh4 is localized in the endoplasmic reticulum and in vacuoles, but during plant infection, it accumulates in infection cushions (ICs) and is then secreted to the apoplast. Two domains within the BcCrh4 protein determine the CDIP activities: a 20aa domain at the N' end activates intense cell death and PTI, while a stretch of 52aa in the middle of the protein induces a weaker response and suppresses the activity of the 20aa N' domain. Deletion of bccrh4 affected fungal development and IC formation in particular, resulting in reduced virulence. Collectively, our findings demonstrate that BcCrh4 is required for fungal development and pathogenicity, and hint at a dual mechanism that balances the virulence activity of this, and potentially other CDIPs.
Collapse
Affiliation(s)
- Yong Liang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Kai Bi
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Derbyshire MC, Raffaele S. Till death do us pair: Co-evolution of plant-necrotroph interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102457. [PMID: 37852141 DOI: 10.1016/j.pbi.2023.102457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
Plants use programmed cell death as a potent defense response against biotrophic pathogens that require living host cells to thrive. However, cell death can promote infection by necrotrophic pathogens. This discrepancy creates specific co-evolutionary dynamics in the interaction between plants and necrotrophs. Necrotrophic pathogens produce diverse cell death-inducing effectors that act redundantly on several plant targets and sometimes suppress plant immune responses as an additional function. Plants use surface receptors that recognize necrotrophic effectors to increase quantitative disease resistance, some of which evolved independently in several plant lineages. Co-evolution has shaped molecular mechanisms involved in plant-necrotroph interactions into robust systems, relying on degenerate and multifunctional modules, general-purpose components, and compartmentalized functioning.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sylvain Raffaele
- Université de Toulouse, INRAE, CNRS, Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), 31326, Castanet-Tolosan, France.
| |
Collapse
|
11
|
Sabnam N, Hussain A, Saha P. The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microb Pathog 2023; 183:106276. [PMID: 37541554 DOI: 10.1016/j.micpath.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Cell death-inducing proteins (CDIPs) are some of the secreted effector proteins manifested by filamentous oomycetes and fungal pathogens to invade the plant tissue and facilitate infection. Along with their involvement in different developmental processes and virulence, CDIPs play a crucial role in plant-pathogen interactions. As the name implies, CDIPs cause necrosis and trigger localised cell death in the infected host tissues by the accumulation of higher concentrations of hydrogen peroxide (H2O2), oxidative burst, accumulation of nitric oxide (NO), and electrolyte leakage. They also stimulate the biosynthesis of defense-related phytohormones such as salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), as well as the expression of pathogenesis-related (PR) genes that are important in disease resistance. Altogether, the interactions result in the hypersensitive response (HR) in the host plant, which might confer systemic acquired resistance (SAR) in some cases against a vast array of related and unrelated pathogens. The CDIPs, due to their capability of inducing host resistance, are thus unique among the array of proteins secreted by filamentous plant pathogens. More interestingly, a few transgenic plant lines have also been developed expressing the CDIPs with added resistance. Thus, CDIPs have opened an interesting hot area of research. The present study critically reviews the current knowledge of major types of CDIPs identified across filamentous phytopathogens and their modes of action in the last couple of years. This review also highlights the recent breakthrough technologies in studying plant-pathogen interactions as well as crop improvement by enhancing disease resistance through CDIPs.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Pallabi Saha
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, United States; Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
12
|
Derbyshire MC, Raffaele S. Surface frustration re-patterning underlies the structural landscape and evolvability of fungal orphan candidate effectors. Nat Commun 2023; 14:5244. [PMID: 37640704 PMCID: PMC10462633 DOI: 10.1038/s41467-023-40949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pathogens secrete effector proteins to subvert host physiology and cause disease. Effectors are engaged in a molecular arms race with the host resulting in conflicting evolutionary constraints to manipulate host cells without triggering immune responses. The molecular mechanisms allowing effectors to be at the same time robust and evolvable remain largely enigmatic. Here, we show that 62 conserved structure-related families encompass the majority of fungal orphan effector candidates in the Pezizomycotina subphylum. These effectors diversified through changes in patterns of thermodynamic frustration at surface residues. The underlying mutations tended to increase the robustness of the overall effector protein structure while switching potential binding interfaces. This mechanism could explain how conserved effector families maintained biological activity over long evolutionary timespans in different host environments and provides a model for the emergence of sequence-unrelated effector families with conserved structures.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France.
| |
Collapse
|
13
|
Degtyaryov E, Pigolev A, Miroshnichenko D, Frolov A, Basnet AT, Gorbach D, Leonova T, Pushin AS, Alekseeva V, Dolgov S, Savchenko T. 12-Oxophytodienoate Reductase Overexpression Compromises Tolerance to Botrytis cinerea in Hexaploid and Tetraploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2050. [PMID: 37653967 PMCID: PMC10222670 DOI: 10.3390/plants12102050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.
Collapse
Affiliation(s)
- Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| | - Alexey Pigolev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| | - Dmitry Miroshnichenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Adi Ti Basnet
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Alexander S. Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Valeriya Alekseeva
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Sergey Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| |
Collapse
|
14
|
Zhu W, Dong H, Xu R, You J, Yan DZ, Xiong C, Wu J, Bi K. Botrytis cinerea BcCDI1 protein triggers both plant cell death and immune response. FRONTIERS IN PLANT SCIENCE 2023; 14:1136463. [PMID: 37180384 PMCID: PMC10167277 DOI: 10.3389/fpls.2023.1136463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Cell death-inducing proteins (CDIPs) play important roles in the infection of Botrytis cinerea, a broad host-range necrotrophic phytopathogen. Here, we show that the secreted protein BcCDI1 (Cell Death Inducing 1) can cause necrosis in tobacco leaves and at the same time elicit plant defense. The transcription of Bccdi1 was induced at the infection stage. Deletion or overexpression of Bccdi1 resulted in no notable change in disease lesion on bean, tobacco, and Arabidopsis leaves, indicating that Bccdi1 has no effect on the final outcome of B. cinerea infection. Furthermore, the plant receptor-like kinases BAK1 and SOBIR1 are required to transduce the cell death-promoting signal induced by BcCDI1. These findings suggest that BcCDI1 is possibly recognized by plant receptors and then induces plant cell death.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Huange Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Enshi, China
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Da-zhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jing Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Kai Bi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|