1
|
Chen M, Xia L, Tan X, Gao S, Wang S, Li M, Zhang Y, Xu T, Cheng Y, Chu Y, Hu S, Wu S, Zhang Z. Seeing the unseen in characterizing RNA editome during rice endosperm development. Commun Biol 2024; 7:1314. [PMID: 39397073 PMCID: PMC11471866 DOI: 10.1038/s42003-024-07032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Rice (Oryza sativa L.) endosperm is essential to provide nutrients for seed germination and determine grain yield. RNA editing, a post-transcriptional modification essential for plant development, unfortunately, is not fully characterized during rice endosperm development. Here, we perform systematic analyses to characterize RNA editome during rice endosperm development. We find that most editing sites are C-to-U CDS-recoding in mitochondria, leading to increased hydrophobic amino acids and changed structures of mitochondrial proteins. Comparative analysis of RNA editome reveals that CDS-recoding sites present higher editing frequencies with lower variabilities and their resultant recoded amino acids tend to exhibit stronger evolutionary conservation across many land plants. Furthermore, we classify mitochondrial genes into three groups, presenting distinct patterns in terms of CDS-recoding events. Besides, we conduct genome-wide screening to detect pentatricopeptide repeat (PPR) proteins and construct PPR-RNA binding profiles, yielding candidate PPR editing factors related to rice endosperm development. Taken together, our findings provide valuable insights for deciphering fundamental mechanisms of rice endosperm development underlying RNA editing machinery.
Collapse
Affiliation(s)
- Ming Chen
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinyu Tan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shenghan Gao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sen Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Man Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuansheng Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Xu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Cheng
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Chu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Shuangyang Wu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria.
| | - Zhang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Wang Y, Huang ZQ, Tian KD, Li H, Xu C, Xia B, Tan BC. Multiple factors interact in editing of PPR-E+-targeted sites in maize mitochondria and plastids. PLANT COMMUNICATIONS 2024; 5:100836. [PMID: 38327059 PMCID: PMC11121751 DOI: 10.1016/j.xplc.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zi-Qin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Kai-Di Tian
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hao Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bingyujie Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|