1
|
Worm J, Jørgensen IF, Davídsson ÓB, Hjalgrim H, Röder T, Ostrowski SR, Pedersen OB, Erikstrup C, Bruun MT, Jensen BA, Sørensen E, Ullum H, Björnsdóttir G, Thorgeirsson T, Stefánsson H, Sveinsson ÓÁ, Stefánsson K, Schytz HW, Bendtsen L, Brunak S, Hansen TF, Maarbjerg S. Trigeminal neuralgia and its comorbidities: a nationwide disease trajectory study. Pain 2024:00006396-990000000-00723. [PMID: 39365662 DOI: 10.1097/j.pain.0000000000003428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
ABSTRACT There is a limited understanding of risk factors and comorbidities in trigeminal neuralgia, a disease characterized by paroxysms of severe unilateral facial pain and a higher incidence in women. We aim to identify temporally associated comorbidities involving trigeminal neuralgia by analyzing nationwide disease trajectories. Using data from 7.2 million unique individuals in the Danish National Patient Register between 1994 and 2018, each individual diagnosed with trigeminal neuralgia was compared with 10,000 matched controls to identify co-occurring diseases. The sequential disease associations were identified in sex-stratified disease trajectories. A Cox-regression analysis investigated whether treatment with carbamazepine or oxcarbazepine, as compared with gabapentin, pregabalin, or lamotrigine, was associated with stroke risk. Finally, we investigated the stroke polygenic risk score and its association with stroke incidence in a subset of genotyped individuals with trigeminal neuralgia. We included 7141 individuals with trigeminal neuralgia (64.2% female, mean age at diagnosis 58.7 years) and identified 18 diseases associated with subsequent trigeminal neuralgia. After diagnosis, trigeminal neuralgia was associated with 9 diseases, including ischemic stroke (relative risk 1.55). Carbamazepine or oxcarbazepine treatment increased the ischemic stroke risk (hazard ratio 1.78; 95% confidence interval 1.47-2.17); however, the polygenic risk of stroke showed no association. In the Danish population, a trigeminal neuralgia diagnosis is temporally associated with 27 diseases revealed in systematic disease trajectories. Trigeminal neuralgia itself and its first-line treatment, but not a stroke polygenic risk score, was associated with an increased risk of ischemic stroke indicating that vascular risk factors should be routinely assessed in individuals with trigeminal neuralgia.
Collapse
Affiliation(s)
- Jacob Worm
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Isabella Friis Jørgensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ólafur Birgir Davídsson
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Haematology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Haematology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Haematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Timo Röder
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Topholm Bruun
- Clinical Immunology Research Unit, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Ólafur Árni Sveinsson
- Faculty of Medicine, University of Iceland, School of Health Sciences, Reykjavik, Iceland
- Department of Neurology, Landspitali National University Hospital of Iceland, Reykjavik, Iceland
| | - Kári Stefánsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, School of Health Sciences, Reykjavik, Iceland
- Department of Neurology, Landspitali National University Hospital of Iceland, Reykjavik, Iceland
| | - Henrik Winther Schytz
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lars Bendtsen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Stine Maarbjerg
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Kim YM, Son JY, Ahn DK. Botulinum toxin type A is a potential therapeutic drug for chronic orofacial pain. J Oral Biosci 2024; 66:496-503. [PMID: 38908515 DOI: 10.1016/j.job.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A), produced by the gram-positive anaerobic bacterium Clostridium botulinum, acts by cleaving synaptosome-associated protein-25 (SNAP-25), an essential component of the presynaptic neuronal membrane that is necessary for fusion with the membrane proteins of neurotransmitter-containing vesicles. Recent studies have highlighted the efficacy of BTX-A in treating chronic pain conditions, including lower back pain, chronic neck pain, neuropathic pain, and trigeminal neuralgia, particularly when patients are unresponsive to traditional painkillers. This review focuses on the analgesic effects of BTX-A in various chronic pain conditions, with a particular emphasis on the orofacial region. HIGHLIGHT This review focuses on the mechanisms by which BTX-A induces analgesia in patients with inflammatory and temporomandibular joint pain. This review also highlights the fact that BTX-A can effectively manage neuropathic pain and trigeminal neuralgia, which are difficult-to-treat chronic pain conditions. Herein, we present a comprehensive assessment of the central analgesic effects of BTX-A and a discussion of its various applications in clinical dental practice. CONCLUSION BTX-A is an approved treatment option for various chronic pain conditions. Although there is evidence of axonal transport of BTX-A from peripheral to central endings in motor neurons, the precise mechanism underlying its pain-modulating effects remains unclear. This review discusses the evidence supporting the effectiveness of BTX-A in controlling chronic pain conditions in the orofacial region. BTX-A is a promising therapeutic agent for treating pain conditions that do not respond to conventional analgesics.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
3
|
Hu X, Xia Y, Li J, Wang X, Liu H, Hu J, Bi J, Wu J, Wang T, Lin Z, Xiong N. Efficacy and Safety of Botulinum Toxin Type A in the Treatment of Trigeminal Neuralgia: An Update on Systematic Review With Meta-analyses. Clin J Pain 2024; 40:383-392. [PMID: 38385501 DOI: 10.1097/ajp.0000000000001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE Pain management in patients with TN is challenging, as facial pain often does not respond well to conventional therapies. Botulinum toxin type A (BTX-A) has been suggested as a potential treatment option, but there is limited evidence regarding its long-term efficacy. This review aimed to analyze the current data for the use of in the treatment of trigeminal neuralgia (TN) and highlight the evidence for its efficacy and safety. METHODS A comprehensive search was conducted in various databases (PubMed, Scopus, Embase, ClinicalTrials, and Cochrane Library) to identify clinical studies evaluating the use of BTX-A in TN until October 2023. Randomized controlled trials (RCTs), single-arm studies, and stratified studies were included in the analysis. The mean difference (MD), effect size (ES), and 95% confidence interval (CI) were estimated for visual analogue scale (VAS) scores, pain episode frequency, and the proportion of responders. RESULTS The analysis included 23 studies, including 4 RCTs, 14 single-arm studies, and 5 stratified studies. In the RCTs, BTX-A was found to significantly reduce mean VAS scores compared with baseline (ES: -4.05; 95% CI: -6.13, -1.97; P =0.002). In 19 non-RCTs, the pooled single-arm analysis revealed that BTX-A decreased VAS scores (ES: -5.19, 95% CI: -6.05, -4.33, P <0.001) and pain attack frequency (ES: -17.85, 95% CI: -23.36, -12.34, P <0.001) from baseline to the end of follow-up. The overall proportion of responders to BTX-A treatment was also significant (95% CI: 0.653, 0.761, P =0.003). DISCUSSION Current evidence indicates that BTX-A injection is an effective and safe option for patients with refractory TN or not responding to medical or surgical management. However, more high-quality studies are needed to further confirm its efficacy.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jichuan Hu
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Juan Bi
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Ashina S, Robertson CE, Srikiatkhachorn A, Di Stefano G, Donnet A, Hodaie M, Obermann M, Romero-Reyes M, Park YS, Cruccu G, Bendtsen L. Trigeminal neuralgia. Nat Rev Dis Primers 2024; 10:39. [PMID: 38816415 DOI: 10.1038/s41572-024-00523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Trigeminal neuralgia (TN) is a facial pain disorder characterized by intense and paroxysmal pain that profoundly affects quality of life and presents complex challenges in diagnosis and treatment. TN can be categorized as classical, secondary and idiopathic. Epidemiological studies show variable incidence rates and an increased prevalence in women and in the elderly, with familial cases suggesting genetic factors. The pathophysiology of TN is multifactorial and involves genetic predisposition, anatomical changes, and neurophysiological factors, leading to hyperexcitable neuronal states, central sensitization and widespread neural plasticity changes. Neurovascular compression of the trigeminal root, which undergoes major morphological changes, and focal demyelination of primary trigeminal afferents are key aetiological factors in TN. Structural and functional brain imaging studies in patients with TN demonstrated abnormalities in brain regions responsible for pain modulation and emotional processing of pain. Treatment of TN involves a multifaceted approach that considers patient-specific factors, including the type of TN, with initial pharmacotherapy followed by surgical options if necessary. First-line pharmacological treatments include carbamazepine and oxcarbazepine. Surgical interventions, including microvascular decompression and percutaneous neuroablative procedures, can be considered at an early stage if pharmacotherapy is not sufficient for pain control or has intolerable adverse effects or contraindications.
Collapse
Affiliation(s)
- Sait Ashina
- BIDMC Comprehensive Headache Center, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- BIDMC Comprehensive Headache Center, Department of Anaesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Giulia Di Stefano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Anne Donnet
- Department of Evaluation and Treatment of Pain, FHU INOVPAIN, Centre Hospitalier Universitaire de Marseille, Hopital de la Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - Mojgan Hodaie
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontairo, Canada
| | - Mark Obermann
- Department of Neurology, Hospital Weser-Egge, Hoexter, Germany
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Marcela Romero-Reyes
- Department of Pain and Neural Sciences, Brotman Facial Pain Clinic, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Lars Bendtsen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, University of Copenhagen, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Copenhagen, Denmark
| |
Collapse
|
5
|
Naderi Y, Rad M, Sadatmoosavi A, Khaleghi E, Khorrami Z, Chamani G, Shabani M. Compared to oxcarbazepine and carbamazepine, botulinum toxin type A is a useful therapeutic option for trigeminal neuralgia symptoms: A systematic review. Clin Exp Dent Res 2024; 10:e882. [PMID: 38558383 PMCID: PMC10982606 DOI: 10.1002/cre2.882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES This review aimed to compare the effectiveness of three treatments: BTX A, CBZ, and OXB, in managing trigeminal neuralgia (TN). MATERIAL AND METHODS We conducted a thorough search for research articles related to our issue using specific keywords on several databases, including Cochrane Central Register of Controlled Trials, Science Direct, Scopus, PubMed, Elsevier, Springer Journals, Ovid Medline, EBSCO, and Web of Science. Our focus was on publications from 1965 to 2023. RESULTS We retrieved 46 articles from the search and reviewed them carefully. Out of these, we selected 29 articles that met the inclusion criteria. Among the selected articles, 11 investigated the effects of CBZ and OXB, while 18 explored the impact of BTX A on the improvement of TN symptoms. The response rate ranged between 56% and 90.5% for CBZ and between 90.9% and 94% for OXB. The response rate for BTX A ranged between 51.4% and 100%. All these three treatments had a remarkable effect on the improvement of TN. Importantly, findings highlighted that side effects of CBZ and OXB could lead to treatment discontinuation in some cases, whereas BTX A's side effects have been minimal and less frequent. CONCLUSIONS Consequently, BTX A emerges as a promising alternative for TN treatment. However, additional clinical trials are necessary to validate this finding, and further research is required to establish a standardized protocol for administering BTX A in TN.
Collapse
Affiliation(s)
- Yeganeh Naderi
- Oral and Dental Diseases Research CenterKerman University of Medical SciencesKermanIran
| | - Maryam Rad
- Oral and Dental Diseases Research CenterKerman University of Medical SciencesKermanIran
| | - Ali Sadatmoosavi
- Research Center for Modeling in HealthKerman University of Medical SciencesKermanIran
| | - Elham Khaleghi
- Research Center for Modeling in HealthKerman University of Medical SciencesKermanIran
| | - Zahra Khorrami
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision ScienceShahid Beheshti University of Medical ScienceTehranIran
| | - Goli Chamani
- Department of Dental Medicine, Karolinska InstituteScandinavian Center for Orofacial Neuroscience (SCON)HuddingeSweden
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology InstituteKerman University of Medical SciencesKermanIran
| |
Collapse
|
6
|
Hosseindoost S, Inanloo SH, Pestehei SK, Rahimi M, Yekta RA, Khajehnasiri A, Rad MA, Majedi H, Dehpour AR. Cellular and molecular mechanisms involved in the analgesic effects of botulinum neurotoxin: A literature review. Drug Dev Res 2024; 85:e22177. [PMID: 38528637 DOI: 10.1002/ddr.22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Botulinum neurotoxins (BoNTs), derived from Clostridium botulinum, have been employed to treat a range of central and peripheral neurological disease. Some studies indicate that BoNT may be beneficial for pain conditions as well. It has been hypothesized that BoNTs may exert their analgesic effects by preventing the release of pain-related neurotransmitters and neuroinflammatory agents from sensory nerve endings, suppressing glial activation, and inhibiting the transmission of pain-related receptors to the neuronal cell membrane. In addition, there is evidence to suggest that the central analgesic effects of BoNTs are mediated through their retrograde axonal transport. The purpose of this review is to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions. Most of the studies reviewed in this article were conducted using BoNT/A. The PubMed database was searched from 1995 to December 2022 to identify relevant literature.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Khalil Pestehei
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Atef Yekta
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khajehnasiri
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wei W, Liu Y, Shen Y, Yang T, Dong Y, Han Z, Wang Y, Liu Z, Chai Y, Zhang M, Wang H, Shen H, Shen Y, Chen M. In situ tissue profile of rat trigeminal nerve in trigeminal neuralgia using spatial transcriptome sequencing. Int J Surg 2024; 110:1463-1474. [PMID: 38270619 PMCID: PMC10942187 DOI: 10.1097/js9.0000000000001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Trigeminal neuralgia (TN) is the most common neuropathic disorder in the maxillofacial region. The etiology and pathogenesis of TN have not been clearly determined to date, although there are many hypotheses. OBJECTIVE The goal of this study was to investigate the interactions between different types of cells in TN, particularly the impact and intrinsic mechanism of demyelination on the trigeminal ganglion, and to identify new important target genes and regulatory pathways in TN. METHODS TN rat models were prepared by trigeminal root compression, and trigeminal nerve tissues were isolated for spatial transcriptome sequencing. The gene expression matrix was reduced dimensionally by PCA and presented by UMAP. Gene function annotation was analyzed by Metascape. The progression of certain clusters and the developmental pseudotime were analyzed using the Monocle package. Modules of the gene coexpression network between different groups were analyzed based on weighted gene coexpression network analysis and assigned AddModuleScore values. The intercellular communication of genes in these networks via ligand-receptor interactions was analyzed using CellPhoneDB analysis. RESULTS The results suggested that the trigeminal ganglion could affect Schwann cell demyelination and remyelination responses through many ligand-receptor interactions, while the effect of Schwann cells on the trigeminal ganglion was much weaker. Additionally, ferroptosis may be involved in the demyelination of Schwann cells. CONCLUSIONS This study provides spatial transcriptomics sequencing data on TN, reveals new markers, and redefines the relationship between the ganglion and myelin sheath, providing a theoretical basis and supporting data for future mechanistic research and drug development.
Collapse
Affiliation(s)
- Wenbin Wei
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Yuemin Liu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | | | - Tao Yang
- Department of Medical Cosmetology, Suzhou, Jiangsu, People’s Republic of China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Zixiang Han
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Yiwen Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Zhiyang Liu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Ying Chai
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Mengjie Zhang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Hanshao Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| | - Hao Shen
- Clinical Laboratory, Suzhou Ninth People’s Hospital
| | | | - Minjie Chen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai
| |
Collapse
|
8
|
Hosseindoost S, Askari Rad M, Inanloo SH, Rahimi M, Dehghan S, Orandi A, Dehpour AR, Majedi H. The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. Mol Pain 2024; 20:17448069241275099. [PMID: 39093638 PMCID: PMC11339750 DOI: 10.1177/17448069241275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Askari Rad
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Orandi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Safarpour D, Jabbari B. Botulinum Toxin Treatment for Cancer-Related Disorders: A Systematic Review. Toxins (Basel) 2023; 15:689. [PMID: 38133193 PMCID: PMC10748363 DOI: 10.3390/toxins15120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
This systematic review investigates the effect of botulinum neurotoxin (BoNT) therapy on cancer-related disorders. A major bulk of the literature is focused on BoNT's effect on pain at the site of surgery or radiation. All 13 published studies on this issue indicated reduction or cessation of pain at these sites after local injection of BoNTs. Twelve studies addressed the effect of BoNT injection into the pylorus (sphincter between the stomach and the first part of the gut) for the prevention of gastroparesis after local resection of esophageal cancer. In eight studies, BoNT injection was superior to no intervention; three studies found no difference between the two approaches. One study compared the result of intra-pyloric BoNT injection with preventive pyloromyotomy (resection of pyloric muscle fibers). Both approaches reduced gastroparesis, but the surgical approach had more serious side effects. BoNT injection was superior to saline injection in the prevention of esophageal stricture after surgery (34% versus 6%, respectively, p = 0.02) and produced better results (30% versus 40% stricture) compared to steroid (triamcinolone) injection close to the surgical region. All 12 reported studies on the effect of BoNT injection into the parotid region for the reduction in facial sweating during eating (gustatory hyperhidrosis) found that BoNT injections stopped or significantly reduced facial sweating that developed after parotid gland surgery. Six studies showed that BoNT injection into the parotid region prevented the development of or healed the fistulas that developed after parotid gland resection-parotidectomy gustatory hyperhidrosis (Frey syndrome), post-surgical parotid fistula, and sialocele. Eight studies suggested that BoNT injection into masseter muscle reduced or stopped severe jaw pain after the first bite (first bite syndrome) that may develop as a complication of parotidectomy.
Collapse
Affiliation(s)
- Delaram Safarpour
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Xiromerisiou G, Lampropoulos IC, Dermitzakis EV, Vikelis M, Marogianni C, Mysiris D, Argyriou AA. Single OnabotulinumtoxinA Session Add-On to Carbamazepine or Oxcarbazepine in Treatment-Refractory Trigeminal Neuralgia: A Case Series with 24-Week Follow Up. Toxins (Basel) 2023; 15:539. [PMID: 37755965 PMCID: PMC10534438 DOI: 10.3390/toxins15090539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
We sought to assess the efficacy of combining onabotulinumtoxinA (BoNTA) as add-on therapy to carbamazepine or oxcarbazepine in treatment-refractory patients with trigeminal neuralgia (TGN) who failed to respond (less than 30% response rate) to adequate monotherapy. We conducted a retrospective study on 15 patients with a definite diagnosis of TGN, according to the established criteria, and underwent BoNTA as part of their treatment plan. A single BoNTA session was administered subcutaneously, according to patients' perceived zone of pain, at different dosages ranging from 30 to 200 units (mean ± standard deviation: 87.3 ± 39.2). All patients (15/15; 100%) reported large reductions in the severity of their TGN-related neuropathic pain. The mean pain score on the VAS scale significantly decreased from 9.3 ± 1.1 to 3.7 ± 1.2 at 2 weeks after injecting BoNTA (p < 0.001) and remained stable at 4 and 24 weeks post-injection. Regarding the impact of BoNTA on patients' health-related quality of life, there were significant improvements in both the physical and mental health domains (p < 0.05) of SF-36 tool. BoNTA may be a safe and effective treatment option for patients with refractory TGN when added on to carbamazepine or oxcarbazepine. The use of a single BoNTA session for TGN treatment may be an alternative to surgical interventions and as add-on treatment to oral medications, providing patients with a minimally invasive, effective, safe and well-tolerated option.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, 41110 Larissa, Greece
| | - Ioannis C. Lampropoulos
- Respiratory Medicine Department, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | | | - Michail Vikelis
- Headache Clinic, Mediterraneo Hospital, 16675 Glyfada, Greece;
| | - Chrysoula Marogianni
- Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, 41110 Larissa, Greece; (C.M.); (D.M.)
| | - Dimitrios Mysiris
- Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, 41110 Larissa, Greece; (C.M.); (D.M.)
| | - Andreas A. Argyriou
- Headache Outpatient Clinic, Department of Neurology, Agios Andreas State General Hospital of Patras, 26335 Patras, Greece;
| |
Collapse
|
11
|
Lopes RV, Baggio DF, Ferraz CR, Bertozzi MM, Saraiva-Santos T, Verri Junior WA, Chichorro JG. Maresin-2 inhibits inflammatory and neuropathic trigeminal pain and reduces neuronal activation in the trigeminal ganglion. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100093. [PMID: 37397816 PMCID: PMC10313899 DOI: 10.1016/j.crneur.2023.100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients' characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment. There is growing evidence that specialized pro-resolution lipid mediators (SPMs) present potent analgesic effects, in addition to their well characterized role in the resolution of inflammation. Maresins (MaR-1 and MaR-2) were the last described members of this family, and MaR-2 analgesic action has not yet been reported. Herein the effect of MaR-2 in different orofacial pain models was investigated. MaR-2 (1 or 10 ng) was always delivered via medullary subarachnoid injection, which corresponds to the intrathecal treatment. A single injection of MaR-2 caused a significant reduction of phases I and II of the orofacial formalin test in rats. Repeated injections of MaR-2 prevented the development of facial heat and mechanical hyperalgesia in a model of post-operative pain in rats. In a model of trigeminal neuropathic pain (CCI-ION), repeated MaR-2 injections reversed facial heat and mechanical hyperalgesia in rats and mice. CCI-ION increased c-Fos positive neurons and CGRP+ activated (nuclear pNFkB) neurons in the trigeminal ganglion (TG), which were restored to sham levels by MaR-2 repeated treatment. In conclusion, MaR-2 showed potent and long-lasting analgesic effects in inflammatory and neuropathic pain of orofacial origin and the inhibition of CGRP-positive neurons in the TG may account for MaR-2 action.
Collapse
Affiliation(s)
- Raphael Vieira Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Camila Rodrigues Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri Junior
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
12
|
Hamilton KT, Seligman R, Blue R, Lee JYK. Refractory glossopharyngeal neuralgia successfully treated with onabotulinumtoxinA: A case report. Headache 2022; 62:1424-1428. [PMID: 36373801 DOI: 10.1111/head.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Glossopharyngeal neuralgia is a rare but severe and disabling pain condition often caused by vascular compression of the glossopharyngeal nerve. Treatment is similar to that of trigeminal neuralgia, but some patients may be refractory to both medical and surgical approaches. Here we present a case of refractory glossopharyngeal neuralgia that responded well to onabotulinumtoxinA (BTX-A). CASE We report a case of a 65-year-old man with well-controlled human immunodeficiency virus disease with glossopharyngeal neuralgia symptoms since 2015. He had partial response to medications but was limited by side-effects. He underwent microvascular decompression twice with initial relief both times, but experienced recurrence of attacks 1-3 years after each surgery. He was treated with BTX-A using the chronic migraine PREEMPT protocol (i.e., 31-39 injection sites in head and neck muscles), which led to significant relief of his glossopharyngeal neuralgia pain. CONCLUSIONS This is the first case to our knowledge of glossopharyngeal neuralgia treated with BTX-A. BTX-A can be an effective treatment for glossopharyngeal neuralgia, even when injections are not administered directly over the sensory distribution of the glossopharyngeal nerve.
Collapse
Affiliation(s)
- Katherine T Hamilton
- Department of Neurology, Medstar Georgetown University, Chevy Chase, Maryland, USA
| | - Rachel Seligman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Blue
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Schott Andersen AS, Maarbjerg S, Noory N, Heinskou TB, Forman JL, Cruccu G, Ashina M, Bendtsen L. Safety and efficacy of erenumab in patients with trigeminal neuralgia in Denmark: a double-blind, randomised, placebo-controlled, proof-of-concept study. Lancet Neurol 2022; 21:994-1003. [DOI: 10.1016/s1474-4422(22)00294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
|
14
|
Teruel A, Romero-Reyes M. Interplay of Oral, Mandibular, and Facial Disorders and Migraine. Curr Pain Headache Rep 2022; 26:517-523. [PMID: 35567662 DOI: 10.1007/s11916-022-01054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE REVIEW Migraine and other primary headache disorders can be localized in the face resembling facial or dental pain, indicating the influence of the trigeminovascular system in the structures innervated by the maxillary (V2) and mandibulary (V3) branches of the trigeminal nerve. Disorders of oral and craniofacial structures may influence primary headache disorders. In the current article, we review the potential links of this interplay. RECENT FINDINGS This interplay may be related to anatomy, with the trigeminal pathway and the involvement of both peripheral and central mechanisms, and the presence of calcitonin gene-related peptide (CGRP), a key mediator in migraine pathophysiology. CGRP is also involved in the pathophysiology of temporomandibular disorders (TMD) and their comorbidity with migraine and is also implicated in dental and periodontal pathology. Inflammatory and pathological processes of these structures and their trigeminal nociceptive pathways may influence the trigeminovascular system and consequently may exacerbate or even potentially trigger migraine.
Collapse
Affiliation(s)
- Antonia Teruel
- Head Pain Institute, 9481 E Ironwood Square Dr. Scottsdale, Scottsdale, AZ, 85258, USA
| | - Marcela Romero-Reyes
- Brotman Facial Pain Clinic, Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, 650 W. Baltimore St. 8th Floor, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Jay GW, Barkin RL. Trigeminal neuralgia and persistent idiopathic facial pain (atypical facial pain). Dis Mon 2022; 68:101302. [PMID: 35027171 DOI: 10.1016/j.disamonth.2021.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gary W Jay
- Department of Neurology, Division: Headache/Pain, University of North Carolina, Chapel Hill, USA.
| | - Robert L Barkin
- Departmentts of Anesthesilogy, Family Medicine, Pharrmacology, Rush University Medical College, Chicago Illinois, USA
| |
Collapse
|
16
|
Marichal-Cancino BA, González-Hernández A, Guerrero-Alba R, Medina-Santillán R, Villalón CM. A critical review of the neurovascular nature of migraine and the main mechanisms of action of prophylactic antimigraine medications. Expert Rev Neurother 2021; 21:1035-1050. [PMID: 34388955 DOI: 10.1080/14737175.2021.1968835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Migraine involves neurovascular, functional, and anatomical alterations. Migraineurs experience an intense unilateral and pulsatile headache frequently accompanied with vomiting, nausea, photophobia, etc. Although there is no ideal preventive medication, frequency in migraine days may be partially decreased by some prophylactics, including antihypertensives, antidepressants, antiepileptics, and CGRPergic inhibitors. However, the mechanisms of action involved in antimigraine prophylaxis remain elusive. AREAS COVERED This review recaps some of the main neurovascular phenomena related to migraine and currently available preventive medications. Moreover, it discusses the major mechanisms of action of the recommended prophylactic medications. EXPERT OPINION In the last three years, migraine prophylaxis has evolved from nonspecific to specific antimigraine treatments. Overall, nonspecific treatments mainly involve neural actions, whereas specific pharmacotherapy (represented by CGRP receptor antagonists and CGRPergic monoclonal antibodies) is predominantly mediated by neurovascular mechanisms that may include, among others: (i) reduction in the cortical spreading depression (CSD)-associated events; (ii) inhibition of pain sensitization; (iii) blockade of neurogenic inflammation; and/or (iv) increase in cranial vascular tone. Accordingly, the novel antimigraine prophylaxis promises to be more effective, devoid of significant adverse effects (unlike nonspecific treatments), and more beneficial for the quality of life of migraineurs.
Collapse
Affiliation(s)
- Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | | | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, México
| | - Roberto Medina-Santillán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina IPN, Ciudad de México C.P, México
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
17
|
Chuinsiri N, Edwards D, Telezhkin V, Nile CJ, Van der Cruyssen F, Durham J. Exploring the roles of neuropeptides in trigeminal neuropathic pain: A systematic review and narrative synthesis of animal studies. Arch Oral Biol 2021; 130:105247. [PMID: 34454375 DOI: 10.1016/j.archoralbio.2021.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE This systematic review aims to explore the changes in expression of neuropeptides and/or their receptors following experimental trigeminal neuropathic pain in animals. DESIGN MEDLINE, Embase, and Scopus were searched for publications up to 31st March 2021. Study selection and data extraction were completed by two independent reviewers based on the eligibility criteria. The quality of articles was judged based on the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk-of-bias tool. RESULTS A total of 19 studies satisfied the eligibility criteria and were included for narrative synthesis. Methods of trigeminal neuropathic pain induction were nerve ligation, nerve compression/crush, nerve transection and dental pulp injury. Animal behaviours used for pain verification were evoked responses to mechanical and thermal stimuli. Non-evoked behaviours, including vertical exploration, grooming and food consumption, were also employed in some studies. Calcitonin gene-related peptide (CGRP) and substance P were the most frequently reported neuropeptides. Overall, unclear to high risk of bias was identified in the included studies. CONCLUSIONS Limited evidence has suggested the pro-nociceptive role of CGRP in trigeminal neuropathic pain. In order to further translational pain research, animal models of trigeminal neuropathic pain and pain validation methods need to be optimised. Complete reporting of future studies based on available guidelines to improve confidence in research is encouraged.
Collapse
Affiliation(s)
- Nontawat Chuinsiri
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - David Edwards
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Nile
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Fréderic Van der Cruyssen
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University Leuven, Leuven, Belgium
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Gerwin R. Chronic Facial Pain: Trigeminal Neuralgia, Persistent Idiopathic Facial Pain, and Myofascial Pain Syndrome-An Evidence-Based Narrative Review and Etiological Hypothesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7012. [PMID: 32992770 PMCID: PMC7579138 DOI: 10.3390/ijerph17197012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Trigeminal neuralgia (TN), the most common form of severe facial pain, may be confused with an ill-defined persistent idiopathic facial pain (PIFP). Facial pain is reviewed and a detailed discussion of TN and PIFP is presented. A possible cause for PIFP is proposed. (1) Methods: Databases were searched for articles related to facial pain, TN, and PIFP. Relevant articles were selected, and all systematic reviews and meta-analyses were included. (2) Discussion: The lifetime prevalence for TN is approximately 0.3% and for PIFP approximately 0.03%. TN is 15-20 times more common in persons with multiple sclerosis. Most cases of TN are caused by neurovascular compression, but a significant number are secondary to inflammation, tumor or trauma. The cause of PIFP remains unknown. Well-established TN treatment protocols include pharmacotherapy, neurotoxin denervation, peripheral nerve ablation, focused radiation, and microvascular decompression, with high rates of relief and varying degrees of adverse outcomes. No such protocols exist for PIFP. (3) Conclusion: PIFP may be confused with TN, but treatment possibilities differ greatly. Head and neck muscle myofascial pain syndrome is suggested as a possible cause of PIFP, a consideration that could open new approaches to treatment.
Collapse
Affiliation(s)
- Robert Gerwin
- Department of Neurology School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|