1
|
Gao X, Lin J, Sun L, Hu J, Gao W, Yu J. Activation of the N-methyl-D-aspartate receptor and calcium/calmodulin-dependent protein kinase IIα signal in the rostral anterior cingulate cortex is involved in pain-related aversion in rats with peripheral nerve injury. Behav Brain Res 2023; 452:114560. [PMID: 37394125 DOI: 10.1016/j.bbr.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The rostral anterior cingulate cortex (rACC) of rat brain is associated with pain-related emotions. However, the underlying molecular mechanism remains unclear. Here, we investigated the effects of the N-methyl-D-aspartate (NMDA) receptor and Ca2+/Calmodulin-dependent protein kinase type II (CaMKII)α signal on pain-related aversion in the rACC of a rat model of neuropathic pain (NP). Mechanical and thermal hyperalgesia were examined using von Frey and hot plate tests in a rat model of NP induced by spared nerve injury (SNI) of the unilateral sciatic nerve. Bilateral rACC pretreatment with the CaMKII inhibitor tat-CN21 (derived from the cell-penetrating tat sequence and CaM-KIIN amino acids 43-63) or tat-Ctrl (the tat sequence and the scrambled sequence of CN21) was performed on postoperative days 29-35 in Sham rats or rats with SNI. Spatial memory performance was tested using an eight-arm radial maze on postoperative days 34-35. Pain-related negative emotions (aversions) were evaluated using the place escape/avoidance paradigm on postoperative day 35 following the spatial memory performance test. The percentage of time spent in the light area was used to assess pain-related negative emotions (i.e., aversion). The expression levels of the NMDA receptor GluN2B subunit, CaMKIIα, and CaMKII-Threonine at position 286 (Thr286) phosphorylation in contralateral rACC specimens were detected by Western blot or real time PCR following the aversion test. Our data showed that pretreatment of the rACC with tat-CN21 increased determinate behavior but did not alter hyperalgesia or spatial memory performance in rats with SNI. In addition, tat-CN21 reversed the enhanced CaMKII-Thr286 phosphorylation and had no effect on the upregulated expression of GluN2B, CaMKIIα protein, and mRNA. Our data suggested that activation of the NMDA receptor-CaMKIIα signal in rACC is associated with pain-related aversion in rats with NP. These data may provide a new approach for the development of drugs that modulate cognitive and emotional pain aspects.
Collapse
Affiliation(s)
- Xueqi Gao
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Jinhai Lin
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Lin Sun
- School of Psychology, Weifang Medical University, Weifang 261053, China
| | - Jun Hu
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Wenjie Gao
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Jianfeng Yu
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Wang Z, Yao Y, Tao Y, Fan P, Yu Y, Xie K, Wang G. Spinal microRNA-134-5p targets glutamate receptor ionotropic kainate 3 to modulate opioid induced hyperalgesia in mice. Mol Pain 2023; 19:17448069231178271. [PMID: 37247385 DOI: 10.1177/17448069231178271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Background: Fentanyl and its analogs are extensively used for pain relief. However, their paradoxically pronociceptive effects often lead to increased opioids consumption and risk of chronic pain. Compared to other synthetic opioids, remifentanil has been strongly linked to acute opioid hyperalgesia after exposure [remifentanil-induced hyperalgesia (RIH)]. The epigenetic regulation of microRNAs (miRNAs) on targeted mRNAs has emerged as an important pathogenesis in pain. The current research aimed at exploring the significance and contributions of miR-134-5p to the development of RIH. Methods: Both the antinociceptive and pronociceptive effects of two commonly used opioids were assessed, and miRNA expression profiles in the spinal dorsal horn (SDH) of mice acutely exposed to remifentanil and remifentanil equianalgesic dose (RED) sufentanil were screened. Next, the candidate miRNA level, cellular distribution, and function were examined by qPCR, fluorescent in situ hybridization (FISH) and Argonaute-2 immunoprecipitation. Furthermore, bioinformatics analysis, luciferase assays, miRNA overexpression, behavioral tests, golgi staining, electron microscopy, whole-cell patch-clamp recording, and immunoblotting were employed to investigate the potential targets and mechanisms underlying RIH. Results: Remifentanil induced significant pronociceptive effects and a distinct miRNA-profile from sufentanil when compared to saline controls. Among top 30 differentially expressed miRNAs spectrum, spinal miR-134-5p was dramatically downregulated in RIH mice but remained comparative in mice subjected to sufentanil. Moreover, Glutamate Receptor Ionotropic Kainate 3 (Grik3) was a target of miR-134-5p. The overexpression of miR-134-5p attenuated the hyperalgesic phenotype, excessive dendritic spine remodeling, excitatory synaptic structural plasticity, and Kainate receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in SDH resulting from remifentanil exposure. Besides, intrathecal injection of selective KA-R antagonist was able to reverse the GRIK3 membrane trafficking and relieved RIH. Conclusion: The miR-134-5p contributes to remifentanil-induced pronociceptive features via directly targeting Grik3 to modulate dendritic spine morphology and synaptic plasticity in spinal neurons.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Yao
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuzhu Tao
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Peixin Fan
- Department of Animal and Dairy Science, Mississippi State University, Starkville, MS, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Jiang M, Wang Y, Wang J, Feng S, Wang X. The etiological roles of miRNAs, lncRNAs, and circRNAs in neuropathic pain: A narrative review. J Clin Lab Anal 2022; 36:e24592. [PMID: 35808924 PMCID: PMC9396192 DOI: 10.1002/jcla.24592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Non‐coding RNAs (ncRNAs) are involved in neuropathic pain development. Herein, we systematically searched for neuropathic pain‐related ncRNAs expression changes, including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs), and circular non‐coding RNAs (circRNAs). Methods We searched two databases, PubMed and GeenMedical, for relevant studies. Results Peripheral nerve injury or noxious stimuli can induce extensive changes in the expression of ncRNAs. For example, higher serum miR‐132‐3p, ‐146b‐5p, and ‐384 was observed in neuropathic pain patients. Either sciatic nerve ligation, dorsal root ganglion (DRG) transaction, or ventral root transection (VRT) could upregulate miR‐21 and miR‐31 while downregulating miR‐668 and miR‐672 in the injured DRG. lncRNAs, such as early growth response 2‐antisense‐RNA (Egr2‐AS‐RNA) and Kcna2‐AS‐RNA, were upregulated in Schwann cells and inflicted DRG after nerve injury, respectively. Dysregulated circRNA homeodomain‐interacting protein kinase 3 (circHIPK3) in serum and the DRG, abnormally expressed lncRNAs X‐inactive specific transcript (XIST), nuclear enriched abundant transcript 1 (NEAT1), small nucleolar RNA host gene 1 (SNHG1), as well as ciRS‐7, zinc finger protein 609 (cirZNF609), circ_0005075, and circAnks1a in the spinal cord were suggested to participate in neuropathic pain development. Dysregulated miRNAs contribute to neuropathic pain via neuroinflammation, autophagy, abnormal ion channel expression, regulating pain‐related mediators, protein kinases, structural proteins, neurotransmission excitatory–inhibitory imbalances, or exosome miRNA‐mediated neuron–glia communication. In addition, lncRNAs and circRNAs are essential in neuropathic pain by acting as antisense RNA and miRNA sponges, epigenetically regulating pain‐related molecules expression, or modulating miRNA processing. Conclusions Numerous dysregulated ncRNAs have been suggested to participate in neuropathic pain development. However, there is much work to be done before ncRNA‐based analgesics can be clinically used for various reasons such as conservation among species, proper delivery, stability, and off‐target effects.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yelong Wang
- Department of Anesthesiology, Gaochun People's Hospital, Nanjing, China
| | - Jing Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
5
|
Song G, Yang Z, Guo J, Zheng Y, Su X, Wang X. Interactions Among lncRNAs/circRNAs, miRNAs, and mRNAs in Neuropathic Pain. Neurotherapeutics 2020; 17:917-931. [PMID: 32632773 PMCID: PMC7609633 DOI: 10.1007/s13311-020-00881-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NP) is directly caused by an injury or disease of the somatosensory nervous system. It is a serious type of chronic pain that is a burden to the economy and public health. Although recent studies have improved our understanding of NP, its pathogenesis has not been fully elucidated. Noncoding RNAs, including lncRNAs, circRNAs, and miRNAs, are involved in the pathological development of NP through many mechanisms. In addition, extensive evidence suggests that novel regulatory mechanisms among lncRNAs/circRNAs, miRNAs, and mRNAs play a crucial role in the pathophysiological process of NP. In this review, we comprehensively summarize the regulatory relationship among lncRNAs/circRNAs, miRNAs, and mRNAs and emphasize the important role of the lncRNA/circRNA-miRNA-mRNA axis in NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Jiabao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Yili Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China.
| |
Collapse
|
6
|
Xue H, Liu J, Shi L, Yang H. Overexpressed microRNA-539-5p inhibits inflammatory response of neurons to impede the progression of cerebral ischemic injury by histone deacetylase 1. Am J Physiol Cell Physiol 2020; 319:C381-C391. [PMID: 32491927 DOI: 10.1152/ajpcell.00576.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several microRNAs (miRNAs or miRs) regulate cerebral ischemic injury outcomes; however, little is known about the role of miR-539-5p during cerebral ischemic injury or the postischemic state. Cerebral ischemic injury was modeled in vitro by exposing human cortical neurons to oxygen-glucose deprivation (OGD) and in vivo by occluding the middle cerebral artery (MCAO) in a rat model. The effects of miR-539-5p, histone deacetylase 1 (HDAC1), and early growth response 2 (EGR2) on cerebral ischemia were investigated using gain- and loss-of-function experiments. We identified changes in miR-539-5p, HDAC1, EGR2, and phosphorylated c-Jun NH2-terminal kinase (JNK). The interaction among miR-539-5p, HDAC1, and EGR2 was determined by dual luciferase reporter gene assay, chromatin immunoprecipitation, and coimmunoprecipitation. We also investigated the effects on cell viability and apoptosis and changes in inflammatory cytokine expression and spatial memory on MCAO rats. miR-539-5p and EGR2 were poorly expressed, while HDAC1 was highly expressed in OGD-treated HCN-2 cells. miR-539-5p targeted HDAC1, while HDAC1 prevented acetylation of EGR2 resulting in its downregulation and subsequent activation of the JNK pathway. Overexpression of miR-539-5p or EGR2 or silencing HDAC1 improved viability and reduced apoptosis of OGD-treated HCN-2 cells in vitro. Furthermore, overexpression of miR-539-5p improved spatial memory, while decreasing cell apoptosis and inflammation in MCAO rats. Collectively, these data suggest that miR-539-5p targets HDAC1 to upregulate EGR2, thus blocking the JNK signaling pathway, by which cerebral ischemic injury is alleviated.
Collapse
Affiliation(s)
- Hang Xue
- Department of Neurotraumatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jianpeng Liu
- Department of Neurosurgery, Yuncheng Central Hospital, Yuncheng, People's Republic of China
| | - Lin Shi
- Department of Neurotraumatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Hongfa Yang
- Department of Neurotraumatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
7
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Kummer KK, Mitrić M, Kalpachidou T, Kress M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int J Mol Sci 2020; 21:E3440. [PMID: 32414089 PMCID: PMC7279227 DOI: 10.3390/ijms21103440] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pain patients frequently develop and suffer from mental comorbidities such as depressive mood, impaired cognition, and other significant constraints of daily life, which can only insufficiently be overcome by medication. The emotional and cognitive components of pain are processed by the medial prefrontal cortex, which comprises the anterior cingulate cortex, the prelimbic, and the infralimbic cortex. All three subregions are significantly affected by chronic pain: magnetic resonance imaging has revealed gray matter loss in all these areas in chronic pain conditions. While the anterior cingulate cortex appears hyperactive, prelimbic, and infralimbic regions show reduced activity. The medial prefrontal cortex receives ascending, nociceptive input, but also exerts important top-down control of pain sensation: its projections are the main cortical input of the periaqueductal gray, which is part of the descending inhibitory pain control system at the spinal level. A multitude of neurotransmitter systems contributes to the fine-tuning of the local circuitry, of which cholinergic and GABAergic signaling are particularly emerging as relevant components of affective pain processing within the prefrontal cortex. Accordingly, factors such as distraction, positive mood, and anticipation of pain relief such as placebo can ameliorate pain by affecting mPFC function, making this cortical area a promising target region for medical as well as psychosocial interventions for pain therapy.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.K.K.); (M.M.); (T.K.)
| |
Collapse
|
9
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Zhang X, Guo H, Xie A, Liao O, Ju F, Zhou Y. MicroRNA-144 relieves chronic constriction injury-induced neuropathic pain via targeting RASA1. Biotechnol Appl Biochem 2019; 67:294-302. [PMID: 31737949 DOI: 10.1002/bab.1854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) have been shown to participate in development of neuropathic pain. However, the role of microRNA-144 (miR-144) in neuropathic pain remains unclear. In the present study, we established a neuropathic pain mouse model via chronic constriction injury (CCI)-induction. The successful establishment of this model was confirmed via evaluation of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). By using this model, we found that miR-144 was significantly downregulated in CCI-induced neuropathic pain mice. In addition, intrathecal injection of miR-144 agomiR alleviated mechanical and thermal hyperalgesia in neuropathic pain mice as shown by the increased of PWT and PWL. Moreover, miR-144 negatively regulated neuroinflammation by decreasing the expression of proinflammatory mediators, including TNF-α (tumor necrosis factor-α), IL (interleukin)-1β, and IL-6, thus facilitating the inhibition of neuropathic pain development. Mechanistically, RASA1 (RAS P21 Protein Activator 1) was downregulated following the injection of agomiR-144, and was verified to be a target of miR-144. Furthermore, overexpression of RASA1 reversed the inhibitory effect of miR-144 on neuropathic pain. Therefore, the present study suggested that miR-144 has the potential to be explored as therapeutic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xianjie Zhang
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - Hongli Guo
- Department of Anesthesiology, Fifth hospital of Deyang City, Deyang, Sichuan Province, China
| | - An Xie
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - Ou Liao
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - Feng Ju
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan Province, China
| | - YuKai Zhou
- Department of Anesthesiology, People's Hospital of Deyang City, Deyang, Sichuan Province, China
| |
Collapse
|
11
|
Guo JB, Zhu Y, Chen BL, Song G, Peng MS, Hu HY, Zheng YL, Chen CC, Yang JZ, Chen PJ, Wang XQ. Network and pathway-based analysis of microRNA role in neuropathic pain in rat models. J Cell Mol Med 2019; 23:4534-4544. [PMID: 31066224 PMCID: PMC6584487 DOI: 10.1111/jcmm.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 04/14/2019] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms underlying neuropathic pain (NP) remain poorly understood. Emerging evidence has suggested the role of microRNAs (miRNAs) in the initiation and development of NP, but the specific effects of miRNAs in NP are largely unknown. Here, we use network- and pathway-based methods to investigate NP-induced miRNA changes and their biological functions by conducting a systematic search through multiple electronic databases. Thirty-seven articles meet the inclusion criteria. Venn analysis and target gene forecasting are performed and the results indicate that 167 overlapping target genes are co-regulated by five down-regulated miRNAs (rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206). Protein-protein interaction network analysis shows that 77 genes exhibit interactions, with cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunit beta (degree = 11) and cAMP-response element binding protein 1 (degree = 10) having the highest connectivity degree. Gene ontology analysis shows that these target genes are enriched in neuron part, neuron projection, somatodendritic compartment and nervous system development. Moreover, analysis of Kyoto Encyclopedia of Genes and Genomes reveals that three pathways, namely, axon guidance, circadian entrainment and insulin secretion, are significantly enriched. In addition, rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206 are consistently down-regulated in the NP models, thus constituting the potential biomarkers of this disease. Characterizing these miRNAs and their target genes paves way for their future use in clinical practice.
Collapse
Affiliation(s)
- Jia-Bao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi Zhu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing-Lin Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Meng-Si Peng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hao-Yu Hu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Chang-Cheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jing-Zhao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
12
|
Yao PW, Wang SK, Chen SX, Xin WJ, Liu XG, Zang Y. Upregulation of tumor necrosis factor-alpha in the anterior cingulate cortex contributes to neuropathic pain and pain-associated aversion. Neurobiol Dis 2019; 130:104456. [PMID: 31028871 DOI: 10.1016/j.nbd.2019.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022] Open
Abstract
Injury associated pain involves subjective perception and emotional experience. The anterior cingulate cortex (ACC) is a key area involved in the affective component of pain processing. However, the neuroimmune mechanisms underlying enhanced ACC excitability following peripheral nerve injury are still not fully understood. Our previous work has shown that tumor necrosis factor-alpha (TNF-α) overexpression leads to peripheral afferent hyperexcitability and synaptic transmission potentiation in spinal cord. Here, we aimed to reveal the potential role of ACC TNF-α in ACC hyperexcitability and neuropathic pain. c-Fos, a widely used neuronal activity marker, was induced especially in contralateral ACC early [postoperative (PO) 1 h] and later (PO day 7 and 10) during the development of neuropathic pain. Spared nerve injury (SNI) elevated TNF-α level in contralateral ACC from PO day 5 to 14, delayed relative to decreased ipsilateral paw withdrawal threshold apparent from PO day 1 to 14. Microinjection of anti-TNF-α antibody into the ACC completely eliminated c-Fos overexpression and greatly attenuated pain aversion and mechanical allodynia induced by SNI, suggesting an important role of ACC TNF-α in the pain aversiveness and pain maintenance. Furthermore, modulating ACC pyramidal neurons via a Gi-coupled human M4 muscarinic receptor (hM4Di) or a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD), greatly changed the ACC TNF-α level and the mechanical paw withdrawal threshold. The positive interactions between TNF-α and ACC neurons might modulate the cytokine microenvironment thus contribute to the neuropathic pain.
Collapse
Affiliation(s)
- Pei-Wen Yao
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, PR China
| | - Shao-Kun Wang
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, PR China
| | - Shao-Xia Chen
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, PR China; Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, PR China
| | - Wen-Jun Xin
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, PR China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, PR China
| | - Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, PR China.
| |
Collapse
|
13
|
Eszlari N, Petschner P, Gonda X, Baksa D, Elliott R, Anderson IM, Deakin JFW, Bagdy G, Juhasz G. Childhood Adversity Moderates the Effects of HTR2A Epigenetic Regulatory Polymorphisms on Rumination. Front Psychiatry 2019; 10:394. [PMID: 31258491 PMCID: PMC6588047 DOI: 10.3389/fpsyt.2019.00394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
The serotonin system has been suggested to moderate the association between childhood maltreatment and rumination, with the latter in its turn reported to be a mediator in the depressogenic effect of childhood maltreatment. Therefore, we investigated whether the associations of two epigenetic regulatory polymorphisms in the HTR2A serotonin receptor gene with Ruminative Responses Scale rumination and its two subtypes, brooding and reflection, are moderated by childhood adversity (derived from the Childhood Trauma Questionnaire) among 1,501 European white adults. We tested post hoc whether the significant associations are due to depression. We also tested the replicability of the significant results within the two subsamples of Budapest and Manchester. We revealed two significant models: both the association of methylation site rs6311 with rumination and that of miRNA binding site rs3125 (supposed to bind miR-1270, miR-1304, miR-202, miR-539 and miR-620) with brooding were a function of childhood adversity, and both interaction findings were significantly present both in the never-depressed and in the ever-depressed group. Moreover, the association of rs3125 with brooding could be replicated across the separate subsamples, and remained significant even when controlling for lifetime depression and the Brief Symptom Inventory depression score. These findings indicate the crucial importance of involving stress factors when considering endophenotypes and suggest that brooding is a more promising endophenotype than a broader measure of rumination. Transdiagnostic relevance of the brooding endophenotype and the potential of targeting epigenetic regulatory polymorphisms of HTR2A in primary and secondary prevention of depression and possibly of other disorders are also discussed.
Collapse
Affiliation(s)
- Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Ian Muir Anderson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - John Francis William Deakin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Greater Manchester Mental Health NHS Foundation Trust, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Shi J, Jiang K, Li Z. MiR-145 ameliorates neuropathic pain via inhibiting inflammatory responses and mTOR signaling pathway by targeting Akt3 in a rat model. Neurosci Res 2017; 134:10-17. [PMID: 29162479 DOI: 10.1016/j.neures.2017.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Neuropathic pain perplexes a large population of patients with various diseases. Inflammation plays a key role in the physiopathology of neuropathic pain. Anti-inflammatory can be a promising strategy to treat neuropathic pain. We generated a chronic constriction injury rat model to mimic neuropathic pain by ligating the left ischiadic nerves of rats. Then we performed intrathecal injection of miR-145 mimics to treat these rats for seven consecutive days. Pain behavior tests including mechanical allodynia and thermal hyperalgesia, pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were analyzed. Quantitative polymerase chain reaction and immunoblotting were performed to detect the changes of signaling pathway after miR-145 mimic treatment. Targeting of Akt3 by miR-145 was studied by dual-luciferase reporter gene assays. MiR-145 mimics injection significantly mollified both mechanical allodynia and thermal hyperalgesia in rats, and down-regulated secretion of TNF-α, IL-1β and IL-6. We confirmed that miR-145 directly targeted Akt3, inhibiting NF-κB and mTOR downstream genes in rat dorsal root ganglia. MiR-145 can mollify neuropathic pain in a chronic constriction injury rat model by reducing inflammation and ion channel overexpression through Akt3/mTOR and Akt3/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jinshan Shi
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Ke Jiang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Zhaoduan Li
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin 300100, China
| |
Collapse
|
15
|
Circulating miR-23b-3p, miR-145-5p and miR-200b-3p are potential biomarkers to monitor acute pain associated with laminitis in horses. Animal 2017; 12:366-375. [PMID: 28689512 DOI: 10.1017/s1751731117001525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circulating microRNAs (miRNAs) are emerging as promising biomarkers for several disorders and related pain. In equine practice, acute laminitis is a common disease characterised by intense pain that severely compromises horse welfare. Recently, the Horse Grimace Scale (HGS), a facial expression-based pain coding system, was shown to be a valid welfare indicator to identify pain linked to acute laminitis. The present study aimed to: determine whether miRNAs can be used as biomarkers for acute pain in horses (Equus caballus) affected by laminitis; integrate miRNAs to their target genes and to categorise target genes for biological processes; gather additional evidence on concurrent validity of HGS by investigating how it correlates to miRNAs. Nine horses presenting acute laminitis with no prior treatment were recruited. As control group, nine healthy horses were further included in the experimental design. Samples were collected from horses with laminitis at admission before any treatment ('pre-treatment') and 7 days after routine laminitis treatment ('post-treatment'). The expression levels of nine circulating miRNAs, namely hsa-miR-532-3p, hsa-miR-219-5p, mmu-miR-134-5p, mmu-miR-124a-3p, hsa-miR-200b-3p, hsa-miR-146a-5p, hsa-miR-23b-3p, hsa-miR-145-5p and hsa-miR-181a-5p, were detected and assessed as potential biomarkers of pain by quantitative PCR using TaqMan® probes. The area under the receiver operating curve (AUC) was then used to evaluate the diagnostic performance of miRNAs. Molecular data were integrated with HGS scores assessed by one trained treatment and time point blind veterinarian. The comparative analysis demonstrated that the levels of miR-23b-3p (P=0.029), miR-145-5p (P=0.015) and miR-200b-3p (P=0.023) were significantly higher in pre-treatment and the AUCs were 0.854, 0.859 and 0.841, respectively. MiR-200b-3p decreased after routine laminitis treatment (P=0.043). Combining two miRNAs in a panel, namely miR-145-5p and miR-200b-3p, increased efficiency in distinguishing animals with acute pain from controls. In addition, deregulated miRNAs were positively correlated to HGS scores. Computational target prediction and functional enrichment identified common biological pathways between different miRNAs. In particular, the glutamatergic pathway was affected by all three miRNAs, suggesting a crucial role in the pathogenesis of pain. In conclusion, the dynamic expression of circulating miR-23b-3p, miR-145-5p and miR-200b-3p was detected in horses with acute laminitis and miRNAs can be considered potentially promising pain biomarkers. Further studies are needed in order to assess their relevancy in other painful conditions severely compromising horse welfare. An important implication would be the possibility to use them for the concurrent validation of non-invasive indicators of pain in horses.
Collapse
|