1
|
Leone CM, Lenoir C, van den Broeke EN. Assessing signs of central sensitization: A critical review of physiological measures in experimentally induced secondary hyperalgesia. Eur J Pain 2024. [PMID: 39315535 DOI: 10.1002/ejp.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Central sensitization (CS) is believed to play a role in many chronic pain conditions. Direct non-invasive recording from single nociceptive neurons is not feasible in humans, complicating CS establishment. This review discusses how secondary hyperalgesia (SHA), considered a manifestation of CS, affects physiological measures in healthy individuals and if these measures could indicate CS. It addresses controversies about heat sensitivity changes, the role of tactile afferents in mechanical hypersensitivity and detecting SHA through electrical stimuli. Additionally, it reviews the potential of neurophysiological measures to indicate CS presence. DATABASES AND DATA TREATMENT Four databases, PubMed, ScienceDirect, Scopus and Cochrane Library, were searched using terms linked to 'hyperalgesia'. The search was limited to research articles in English conducted in humans until 2023. RESULTS Evidence for heat hyperalgesia in the SHA area is sparse and seems to depend on the experimental method used. Minimal or no involvement of tactile afferents in SHA was found. At the spinal level, the threshold of the nociceptive withdrawal reflex (RIII) is consistently reduced during experimentally induced SHA. The RIII area and the spinal somatosensory potential (N13-SEP) amplitude are modulated only with long-lasting nociceptive input. At the brain level, pinprick-evoked potentials within the SHA area are increased. CONCLUSIONS Mechanical pinprick hyperalgesia is the most reliable behavioural readout for SHA, while the RIII threshold is the most sensitive neurophysiological readout. Due to scarce data on reliability, sensitivity and specificity, none of the revised neurophysiological methods is currently suitable for CS identification at the individual level. SIGNIFICANCE Gathering evidence for CS in humans is a crucial research focus, especially with the increasing interest in concepts such as 'central sensitization-like pain' or 'nociplastic pain'. This review clarifies which readouts, among the different behavioural and neurophysiological proxies tested in experimental settings, can be used to infer the presence of CS in humans.
Collapse
Affiliation(s)
- Caterina M Leone
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Cedric Lenoir
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | | |
Collapse
|
2
|
Jaltare KP, Meyers E, Torta DM. The Role of Pain Expectations in the Development of Secondary Pinprick Hypersensitivity: Behavioral-Neurophysiological Evidence and the Role of Pain-Related Fear. THE JOURNAL OF PAIN 2024; 25:104567. [PMID: 38750990 DOI: 10.1016/j.jpain.2024.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Secondary mechanical hypersensitivity, a common symptom of neuropathic pain, reflects increased responsiveness of nociceptive pathways and can be induced temporarily in healthy volunteers using high-frequency electrical stimulation of the skin. Expectations modulate acute pain perception and fear of pain has been shown to attenuate and amplify the placebo and nocebo effects, respectively. However, the role of expectations and fear in the development of mechanical secondary hypersensitivity remains unclear. The modulatory role of fear and expectations in the development of mechanical secondary hypersensitivity remains so far mainly correlational. Here, we randomly assigned healthy participants (women) to a placebo, nocebo, or control group. In the experimental groups, participants' expectations of pain were manipulated using verbal suggestions accompanied by an inert treatment. Fear of pain was evaluated both in terms of fear of pain and via questionnaires. Sensitivity to mechanical stimulation was assessed by self-reported pinprick ratings before and after high-frequency stimulation; pinprick-evoked potentials elicited by the stimulation were recorded. The placebo group developed the least mechanical secondary hypersensitivity (smaller proximal-distal spread), while the nocebo group developed the most, but only when outliers were excluded. Higher expectations of pain predicted a greater development of mechanical secondary hypersensitivity. Anticipatory pain-related fear only mediated the relationship between unpleasantness expectations and perceived pinprick unpleasantness. Dispositional fear of pain moderated the relationship between expectations and the perceived intensity and unpleasantness of pinpricks. No group differences were observed in pinprick-evoked potentials. We provide preliminary evidence that both expectations and fear impact the development of mechanical secondary hypersensitivity. PERSPECTIVE: Expectations of pain may influence the development of secondary mechanical hypersensitivity. This effect is moderated by dispositional fear of pain and partially mediated by situational fear of pain.
Collapse
Affiliation(s)
- Ketan Prafull Jaltare
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
| | - Elke Meyers
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Diana M Torta
- Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Dreismickenbecker E, Fleckenstein J, Walter C, Enax-Krumova EK, Fischer MJM, Kreuzer M, Zinn S, Anders M. Nociceptive Processing of Elite Athletes Varies between Sport-Specific Loads: An EEG-Based Study Approach. Med Sci Sports Exerc 2024; 56:1046-1055. [PMID: 38227482 DOI: 10.1249/mss.0000000000003390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
INTRODUCTION For the downstream nociceptive processing of elite athletes, recent studies indicate that athletes probably tolerate more pain as compared with a normally active population. Phenotyping the nociceptive processing of athletes in different types of endurance sports can provide insight into training-specific effects, which may help in understanding the long-term effects of specific exercise. METHODS Twenty-six elite endurance athletes from the disciplines of rowing, triathlon, and running and 26 age- and sex-matched, recreationally active control subjects who participated in the subjective pain perception and processing of standardized noxious stimuli were investigated by EEG. This included standardized heat pain thresholds (HPT) and contact heat-evoked potentials from heat stimulation, measured with EEG as well as pinprick-evoked potentials from mechanical stimulation. RESULTS After noxious stimulation, athletes showed a higher activation of the event-related spectral perturbation (ERSP) patterns in the N2P2 EEG response at the Cz Electrode compared with the controls. After noxious contact heat stimulation, triathletes had a higher ERSP activation compared with the controls, whereas the rowers had a higher ERSP activation after noxious mechanical stimulation. Also, HPT in triathletes were increased despite their increased central activation after thermal stimulation. We found a correlation between increased HPT and training hours and years, although athletes did not differ within these variables. CONCLUSIONS Although we were able to identify differences between athletes of different endurance sports, the reasons and implications of these differences remain unclear. The study of sport-specific somatosensory profiles may help to understand the mechanisms of exercise-related long-term effects on pain processing and perception. Furthermore, sport-specific somatosensory effects may support the personalization of exercise interventions and identify risk factors for chronic pain in elite athletes.
Collapse
Affiliation(s)
| | - Johannes Fleckenstein
- Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University, Frankfurt, GERMANY
| | - Carmen Walter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, GERMANY
| | - Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH Bochum, Ruhr University Bochum, Bochum, GERMANY
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, AUSTRIA
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, GERMANY
| | | | - Malte Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, GERMANY
| |
Collapse
|
4
|
Bedwell GJ, Chikezie PC, Siboza FT, Mqadi L, Rice ASC, Kamerman PR, Parker R, Madden VJ. A Systematic Review and Meta-analysis of Non-pharmacological Methods to Manipulate Experimentally Induced Secondary Hypersensitivity. THE JOURNAL OF PAIN 2023; 24:1759-1797. [PMID: 37356604 DOI: 10.1016/j.jpain.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
This systematic review and meta-analysis investigated the effects of non-pharmacological manipulations on experimentally induced secondary hypersensitivity in pain-free humans. We investigated the magnitude (change/difference in follow-up ratings from pre-manipulation ratings) of secondary hypersensitivity (primary outcome), and surface area of secondary hypersensitivity (secondary outcome), in 27 studies representing 847 participants. Risk of bias assessment concluded most studies (23 of 27) had an unclear or high risk of performance and detection bias. Further, 2 (of 27) studies had a high risk of measurement bias. Datasets were pooled by the method of manipulation and outcome. The magnitude of secondary hypersensitivity was decreased by diverting attention, anodal transcranial direct current stimulation, or emotional disclosure; increased by directing attention toward the induction site, nicotine deprivation, or negative suggestion; and unaffected by cathodal transcranial direct current stimulation or thermal change. Area of secondary hypersensitivity was decreased by anodal transcranial direct current stimulation, emotional disclosure, cognitive behavioral therapy, hyperbaric oxygen therapy, placebo analgesia, or spinal manipulation; increased by directing attention to the induction site, nicotine deprivation, or sleep disruption (in males only); and unaffected by cathodal transcranial direct current stimulation, thermal change, acupuncture, or electroacupuncture. Meta-analytical pooling was only appropriate for studies that used transcranial direct current stimulation or hyperbaric oxygen therapy, given the high clinical heterogeneity among the studies and unavailability of data. The evidence base for this question remains small. We discuss opportunities to improve methodological rigor including manipulation checks, structured blinding strategies, control conditions or time points, and public sharing of raw data. PERSPECTIVE: We described the effects of several non-pharmacological manipulations on experimentally induced secondary hypersensitivity in humans. By shedding light on the potential for non-pharmacological therapies to influence secondary hypersensitivity, it provides a foundation for the development and testing of targeted therapies for secondary hypersensitivity.
Collapse
Affiliation(s)
- Gillian J Bedwell
- Department of Health and Rehabilitation Sciences, University of Cape Town, Cape Town, South Africa; Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
| | - Prince C Chikezie
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Felicia T Siboza
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Luyanduthando Mqadi
- Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa; HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Andrew S C Rice
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Peter R Kamerman
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Romy Parker
- Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
| | - Victoria J Madden
- Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa; HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Bonin EAC, Lejeune N, Szymkowicz E, Bonhomme V, Martial C, Gosseries O, Laureys S, Thibaut A. Assessment and management of pain/nociception in patients with disorders of consciousness or locked-in syndrome: A narrative review. Front Syst Neurosci 2023; 17:1112206. [PMID: 37021037 PMCID: PMC10067681 DOI: 10.3389/fnsys.2023.1112206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
The assessment and management of pain and nociception is very challenging in patients unable to communicate functionally such as patients with disorders of consciousness (DoC) or in locked-in syndrome (LIS). In a clinical setting, the detection of signs of pain and nociception by the medical staff is therefore essential for the wellbeing and management of these patients. However, there is still a lot unknown and a lack of clear guidelines regarding the assessment, management and treatment of pain and nociception in these populations. The purpose of this narrative review is to examine the current knowledge regarding this issue by covering different topics such as: the neurophysiology of pain and nociception (in healthy subjects and patients), the source and impact of nociception and pain in DoC and LIS and, finally, the assessment and treatment of pain and nociception in these populations. In this review we will also give possible research directions that could help to improve the management of this specific population of severely brain damaged patients.
Collapse
Affiliation(s)
- Estelle A. C. Bonin
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre Hospitalier Neurologique (CHN) William Lennox, Saint-Luc Hospital Group, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Szymkowicz
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liège University Hospital, Liège, Belgium
- Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et Services Sociaux (CIUSS), University Laval, Québec City, QC, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- *Correspondence: Aurore Thibaut,
| |
Collapse
|
6
|
Triccas LT, Camilleri KP, Tracey C, Mansoureh FH, Benjamin W, Francesca M, Leonardo B, Dante M, Geert V. Reliability of Upper Limb Pin-Prick Stimulation With Electroencephalography: Evoked Potentials, Spectra and Source Localization. Front Hum Neurosci 2022; 16:881291. [PMID: 35937675 PMCID: PMC9351050 DOI: 10.3389/fnhum.2022.881291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order for electroencephalography (EEG) with sensory stimuli measures to be used in research and neurological clinical practice, demonstration of reliability is needed. However, this is rarely examined. Here we studied the test-retest reliability of the EEG latency and amplitude of evoked potentials and spectra as well as identifying the sources during pin-prick stimulation. We recorded EEG in 23 healthy older adults who underwent a protocol of pin-prick stimulation on the dominant and non-dominant hand. EEG was recorded in a second session with rest intervals of 1 week. For EEG electrodes Fz, Cz, and Pz peak amplitude, latency and frequency spectra for pin-prick evoked potentials was determined and test-retest reliability was assessed. Substantial reliability ICC scores (0.76-0.79) were identified for evoked potential negative-positive amplitude from the left hand at C4 channel and positive peak latency when stimulating the right hand at Cz channel. Frequency spectra showed consistent increase of low-frequency band activity (< 5 Hz) and also in theta and alpha bands in first 0.25 s. Almost perfect reliability scores were found for activity at both low-frequency and theta bands (ICC scores: 0.81-0.98). Sources were identified in the primary somatosensory and motor cortices in relation to the positive peak using s-LORETA analysis. Measuring the frequency response from the pin-prick evoked potentials may allow the reliable assessment of central somatosensory impairment in the clinical setting.
Collapse
Affiliation(s)
- Lisa Tedesco Triccas
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Kenneth P. Camilleri
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Camilleri Tracey
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Fahimi Hnazaee Mansoureh
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- The Wellcome Trust Centre for Neuroimaging, University College London Institute of Neurology, London, United Kingdom
| | | | - Muscat Francesca
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Boccuni Leonardo
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Mantini Dante
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Verheyden Geert
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Fabig SC, Kersebaum D, Lassen J, Sendel M, Jendral S, Muntean A, Baron R, Hüllemann P. A modality-specific somatosensory evoked potential test protocol for clinical evaluation: A feasibility study. Clin Neurophysiol 2021; 132:3104-3115. [PMID: 34740042 DOI: 10.1016/j.clinph.2021.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We aimed to establish an objective neurophysiological test protocol that can be used to assess the somatosensory nervous system. METHODS In order to assess most fiber subtypes of the somatosensory nervous system, repetitive stimuli of seven different modalities (touch, vibration, pinprick, cold, contact heat, laser, and warmth) were synchronized with the electroencephalogram (EEG) and applied on the cheek and dorsum of the hand and dorsum of the foot in 21 healthy subjects and three polyneuropathy (PNP) patients. Latencies and amplitudes of the modalities were assessed and compared. Patients received quantitative sensory testing (QST) as reference. RESULTS We found reproducible evoked potentials recordings for touch, vibration, pinprick, contact-heat, and laser stimuli. The recording of warm-evoked potentials was challenging in young healthy subjects and not applicable in patients. Latencies were shortest within Aβ-fiber-mediated signals and longest within C-fibers. The test protocol detected function loss within the Aβ-fiber and Aδ-fiber-range in PNP patients. This function loss corresponded with QST findings. CONCLUSION In this pilot study, we developed a neurophysiological test protocol that can specifically assess most of the somatosensory modalities. Despite technical challenges, initial patient data appear promising regarding a possible future clinical application. SIGNIFICANCE Established and custom-made stimulators were combined to assess different fiber subtypes of the somatosensory nervous system using modality-specific evoked potentials.
Collapse
Affiliation(s)
- Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany.
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Josephine Lassen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Swantje Jendral
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Alexandra Muntean
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| |
Collapse
|
8
|
Di Lionardo A, Di Stefano G, Leone C, Di Pietro G, Sgro E, Malara E, Cosentino C, Mollica C, Blockeel AJ, Caspani O, Garcia-Larrea L, Mouraux A, Treede RD, Phillips KG, Valeriani M, Truini A. Modulation of the N13 component of the somatosensory evoked potentials in an experimental model of central sensitization in humans. Sci Rep 2021; 11:20838. [PMID: 34675309 PMCID: PMC8531029 DOI: 10.1038/s41598-021-00313-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The N13 component of somatosensory evoked potential (N13 SEP) represents the segmental response of dorsal horn neurons. In this neurophysiological study, we aimed to verify whether N13 SEP might reflect excitability changes of dorsal horn neurons during central sensitization. In 22 healthy participants, we investigated how central sensitization induced by application of topical capsaicin to the ulnar nerve territory of the hand dorsum modulated N13 SEP elicited by ulnar nerve stimulation. Using a double-blind placebo-controlled crossover design, we also tested whether pregabalin, an analgesic drug with proven efficacy on the dorsal horn, influenced capsaicin-induced N13 SEP modulation. Topical application of capsaicin produced an area of secondary mechanical hyperalgesia, a sign of central sensitization, and increased the N13 SEP amplitude but not the peripheral N9 nor the cortical N20-P25 amplitude. This increase in N13 SEP amplitude paralleled the mechanical hyperalgesia and persisted for 120 min. Pregabalin prevented the N13 SEP modulation associated with capsaicin-induced central sensitization, whereas capsaicin application still increased N13 SEP amplitude in the placebo treatment session. Our neurophysiological study showed that capsaicin application specifically modulates N13 SEP and that this modulation is prevented by pregabalin, thus suggesting that N13 SEP may reflect changes in dorsal horn excitability and represent a useful biomarker of central sensitization in human studies.
Collapse
Affiliation(s)
- A Di Lionardo
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy
| | - G Di Stefano
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy
| | - C Leone
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy
| | - G Di Pietro
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy
| | - E Sgro
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy
| | - E Malara
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy
| | - C Cosentino
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy
| | - C Mollica
- Department of Statistical Sciences, Sapienza University, Rome, Italy
| | - A J Blockeel
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - O Caspani
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - L Garcia-Larrea
- Lyon Neurosciences Center Research Unit Inserm U 1028, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.,Pain Center, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | - A Mouraux
- UCLouvain, Institute of Neuroscience (IoNS), Brussels, Belgium
| | - R D Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - K G Phillips
- Neuroscience Next Generation Therapeutics, Eli Lilly and Company, Lilly Innovation Center, Cambridge, MA, 02142, USA
| | - M Valeriani
- Department of Neuroscience, Headache Center, Bambino Gesù Children's Hospital, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Andrea Truini
- Department of Human Neuroscience, University Sapienza, Viale Università 30, 00185, Rome, Italy.
| |
Collapse
|
9
|
den Boer C, Terluin B, van der Wouden JC, Blankenstein AH, van der Horst HE. Tests for central sensitization in general practice: a Delphi study. BMC FAMILY PRACTICE 2021; 22:206. [PMID: 34666688 PMCID: PMC8527602 DOI: 10.1186/s12875-021-01539-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Central sensitization (CS) may explain the persistence of symptoms in patients with chronic pain and persistent physical symptoms (PPS). There is a need for assessing CS in the consultation room. In a recently published systematic review, we made an inventory of tests for CS. In this study we aimed to assess which tests might have added value, might be feasible and thus be suitable for use in general practice. METHODS We conducted a Delphi study consisting of two e-mail rounds to reach consensus among experts in chronic pain and PPS. We invited 40 national and international experts on chronic pain and PPS, 27 agreed to participate. We selected 12 tests from our systematic review and additional searches; panellists added three more tests in the first round. We asked the panellists, both clinicians and researchers, to rate these 15 tests on technical feasibility for use in general practice, added value and to provide an overall judgement for suitability in general practice. RESULTS In two rounds the panellists reached consensus on 14 of the 15 tests: three were included, eleven excluded. Included were the Central Sensitization Inventory (CSI), pressure pain thresholds (PPTs) and monofilaments. No consensus was reached on the Sensory Hypersensitivity Scale. CONCLUSION In a Delphi study among an international panel of experts, three tests for measuring CS were considered to be suitable for use in general practice: the Central Sensitization Inventory (CSI), pressure pain thresholds (PPTs) and monofilaments.
Collapse
Affiliation(s)
- Carine den Boer
- Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Berend Terluin
- Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Johannes C van der Wouden
- Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Annette H Blankenstein
- Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Henriëtte E van der Horst
- Department of General Practice, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Scheuren PS, David G, Kramer JLK, Jutzeler CR, Hupp M, Freund P, Curt A, Hubli M, Rosner J. Combined Neurophysiologic and Neuroimaging Approach to Reveal the Structure-Function Paradox in Cervical Myelopathy. Neurology 2021; 97:e1512-e1522. [PMID: 34380751 DOI: 10.1212/wnl.0000000000012643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To explore the so-called structure-function paradox in individuals with focal spinal lesions by means of tract-specific MRI coupled with multimodal evoked potentials and quantitative sensory testing. METHODS Individuals with signs and symptoms attributable to cervical myelopathy (i.e., no evidence of competing neurologic diagnoses) were recruited at the Balgrist University Hospital, Zurich, Switzerland, between February 2018 and March 2019. We evaluated the relationship between the extent of structural damage within spinal nociceptive pathways (i.e., dorsal horn, spinothalamic tract, anterior commissure) assessed with atlas-based MRI and (1) the functional integrity of spinal nociceptive pathways measured with contact heat-, cold-, and pinprick-evoked potentials and (2) clinical somatosensory phenotypes assessed with quantitative sensory testing. RESULTS Sixteen individuals (mean age 61 years) with either degenerative (n = 13) or posttraumatic (n = 3) cervical myelopathy participated in the study. Most individuals presented with mild myelopathy (modified Japanese Orthopaedic Association score >15; n = 13). A total of 71% of individuals presented with structural damage within spinal nociceptive pathways on MRI. However, 50% of these individuals presented with complete functional sparing (i.e., normal contact heat-, cold-, and pinprick-evoked potentials). The extent of structural damage within spinal nociceptive pathways was not associated with functional integrity of thermal (heat: p = 0.57; cold: p = 0.49) and mechano-nociceptive pathways (p = 0.83) or with the clinical somatosensory phenotype (heat: p = 0.16; cold: p = 0.37; mechanical: p = 0.73). The amount of structural damage to the spinothalamic tract did not correlate with spinothalamic conduction velocity (p > 0.05; ρ = -0.11). DISCUSSION Our findings provide neurophysiologic evidence to substantiate that structural damage in the spinal cord does not equate to functional somatosensory deficits. This study recognizes the pronounced structure-function paradox in cervical myelopathies and underlines the inevitable need for a multimodal phenotyping approach to reveal the eloquence of lesions within somatosensory pathways.
Collapse
Affiliation(s)
- Paulina Simonne Scheuren
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Gergely David
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - John Lawrence Kipling Kramer
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Catherine Ruth Jutzeler
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Markus Hupp
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Patrick Freund
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Armin Curt
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Michèle Hubli
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Jan Rosner
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland.
| |
Collapse
|
11
|
Heutehaus L, Schuld C, Solinas D, Hensel C, Kämmerer T, Weidner N, Rupp R, Franz S. Revisiting the Examination of Sharp/Dull Discrimination as Clinical Measure of Spinothalamic Tract Integrity. Front Neurol 2021; 12:677888. [PMID: 34276538 PMCID: PMC8280296 DOI: 10.3389/fneur.2021.677888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: Revisiting the sharp/dull discrimination as clinical measure of spinothalamic tract function considering the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). Three clinically relevant factors were evaluated as to their impact on reliability: (1) the localization of dermatomes in relation to the sensory level, (2) the examination tool, and (3) the threshold of correct answers for grading of a preserved sharp/dull discrimination. Design: Prospective monocentric psychometric study. Setting: Spinal Cord Injury Center, Heidelberg University Hospital, Germany. Participants: Convenient sample of 21 individuals with subacute spinal cord injury (age: 31–82 years) and 20 individuals without spinal cord injury (age: 24–63 years). Assessment: All participants underwent three assessments for sharp/dull discrimination, applying five commonly used examination tools in seven dermatomes, performed by three trained examiners under conditions in accordance with ISNCSCI. Main Outcome Measures: Assessment of interrater reliability by determining both the Fleiss kappa (κ) coefficient and the percentage agreement between raters. Data were dichotomized regarding the ISNCSCI threshold. Results: Interrater reliability in individuals with SCI was overall substantial (κ = 0.68; CI 0.679–0.681) and moderate (κ = 0.54; CI 0.539–0.543) in dermatomes below the sensory level. All applied tools led to at least moderate reliability below the sensory level (lowest κ = 0.44; CI 0.432–0.440), with the officially endorsed safety pin achieving the highest (substantial) reliability (κ = 0.64; CI 0.638–0.646). Percentage agreement differed between non-SCI (97.3%) and formally intact above level dermatomes in SCI (89.2%). Conclusions: Sharp/dull discrimination as a common clinical examination technique for spinothalamic tract function is a reliable assessment. Independent from the used examination tools, reliability was substantial, with the medium-sized safety pin delivering the most favorable results. Notwithstanding this, all other tools could be considered if a safety pin is not available. Regarding interrater reliability and guessing probability, a threshold of 80% correct responses for preserved sharp/dull discrimination appears to be most suitable, which is in line with current clinical approaches and ISNCSCI. The causal attribution of the identified differences in sharp/dull discrimination between clinically intact dermatomes of individuals with SCI and unaffected dermatomes of individuals without SCI requires future work. Clinical Trial Registration Number (German Clinical Trials Register): DRKS00015334 (https://www.drks.de).
Collapse
Affiliation(s)
- Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Schuld
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Solinas
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Cornelia Hensel
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Kämmerer
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Valentini E, Schulz E. Automatised application of pinprick-evoked potentials improves investigation of central sensitisation in humans. Clin Neurophysiol 2020; 131:2482-2483. [DOI: 10.1016/j.clinph.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/25/2022]
|