1
|
Wang J, Wu XC, Zhang MM, Ren JH, Sun Y, Liu JZ, Wu XQ, He SY, Li YQ, Zhang JB. Spinal cord stimulation reduces cardiac pain through microglial deactivation in rats with chronic myocardial ischemia. Mol Med Rep 2021; 24:835. [PMID: 34608504 PMCID: PMC8503748 DOI: 10.3892/mmr.2021.12475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
Angina pectoris is cardiac pain that is a common clinical symptom often resulting from myocardial ischemia. Spinal cord stimulation (SCS) is effective in treating refractory angina pectoris, but its underlying mechanisms have not been fully elucidated. The spinal dorsal horn is the first region of the central nervous system that receives nociceptive information; it is also the target of SCS. In the spinal cord, glial (astrocytes and microglia) activation is involved in the initiation and persistence of chronic pain. Thus, the present study investigated the possible cardiac pain-relieving effects of SCS on spinal dorsal horn glia in chronic myocardial ischemia (CMI). CMI was established by left anterior descending artery ligation surgery, which induced significant spontaneous/ongoing cardiac pain behaviors, as measured using the open field test in rats. SCS effectively improved such behaviors as shown by open field and conditioned place preference tests in CMI model rats. SCS suppressed CMI-induced spinal dorsal horn microglial activation, with downregulation of ionized calcium-binding adaptor protein-1 expression. Moreover, SCS inhibited CMI-induced spinal expression of phosphorylated-p38 MAPK, which was specifically colocalized with the spinal dorsal horn microglia rather than astrocytes and neurons. Furthermore, SCS could depress spinal neuroinflammation by suppressing CMI-induced IL-1β and TNF-α release. Intrathecal administration of minocycline, a microglial inhibitor, alleviated the cardiac pain behaviors in CMI model rats. In addition, the injection of fractalkine (microglia-activating factor) partially reversed the SCS-produced analgesic effects on CMI-induced cardiac pain. These results indicated that the therapeutic mechanism of SCS on CMI may occur partially through the inhibition of spinal microglial p38 MAPK pathway activation. The present study identified a novel mechanism underlying the SCS-produced analgesic effects on chronic cardiac pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xiao-Chen Wu
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Ming-Ming Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jia-Hao Ren
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Sun
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing-Zhen Liu
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xi-Qiang Wu
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Si-Yi He
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jin-Bao Zhang
- Department of Cardiothoracic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
2
|
Cheng J. Is t ime to edefine europathic ain? PAIN MEDICINE 2021; 22:2801-2802. [PMID: 33988721 DOI: 10.1093/pm/pnab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The current definition of neuropathic pain is not sufficiently inclusive of the neuropathic pain conditions. There is a need in clinical practice and scientific research for the definition to not only cover conditions that are a direct consequence of a lesion or diseases affecting the somatosensory system but also those that are a direct consequence of a lesion or diseases affecting the visceral sensory system, as the IASP definition intends to. Here I propose to redefine neuropathic pain as "Pain caused by a lesion or disease of the sensory nervous system".
Collapse
Affiliation(s)
- Jianguo Cheng
- Departments of Pain Management of Neurosciences, Cleveland Clinic, Ohio, USA
| |
Collapse
|